
Java certification success, Part 2: SCWCD
Skill Level: Introductory

Seema Manivannan (seema@whizlabs.com)
Java developer and trainer
Whizlabs

04 May 2004

Sun Certified Web Component Developer (SCWCD) is one of most coveted
certifications in the J2EE domain. If you're considering the SCWCD certification, you
need to be aware that it takes more than just learning the servlet and JSP
technologies. It requires in-depth knowledge of the topics specified in the exam
objectives, and Java programmer and certification trainer, Seema Manivannan of
Whizlabs offers just that in this comprehensive tutorial. Seema covers the 13 main
objectives of the SCWCD exam and provides a Q&A section to ensure you
understand the concepts.

Section 1. Getting started

Preparing for SCWCD

Sun Certified Web Component Developer (SCWCD) is one of most coveted
certifications in the J2EE domain. If you're considering the SCWCD certification, you
need to be aware that it takes more than just learning the servlet and JSP
technologies. It requires in-depth knowledge of the topics specified in the exam
objectives. It is not uncommon for even experienced programmers to perform poorly
in the exam due to the fact that they might not be well-versed in everything that is
covered by the objectives. For the best chance at success, it is important to follow a
learning approach that is guided by the exam objectives.

Should I take this tutorial?

The SCWCD certification exam can be taken only by Sun Certified Programmers for
Java 2 platform.

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 78

mailto:seema@whizlabs.com
http://www.ibm.com/legal/copytrade.shtml

This tutorial is intended for professionals experienced in developing Web
applications using the Java technology servlet and Java Server Pages (JSP) APIs.
As it is not a comprehensive tutorial for these technologies, it is not recommended
for novices in this field. The aim of this tutorial is to provide precise coverage of the
concepts tested in the SCWCD exam. It focuses solely on what you need to know to
be successful in the exam.

The SCWCD certification consists of 13 main objectives dealing with servlets as well
as JSP pages, using JavaBeans components in JSP pages, developing and using
custom tags, and dealing with some important J2EE design patterns. The objectives
are:

• The servlet model

• Structure and deployment of modern servlet Web apps

• The servlet container model

• Developing servlets to handle server-side exceptions

• Developing servlets using session management

• Developing secure Web applications

• Developing thread-safe servlets

• The JavaServer Pages technology model

• Developing reusable Web components

• Developing JSP pages using JavaBeans components

• Developing JSP pages using custom tags

• Developing a custom tag library

• J2EE design patterns

Each chapter of the tutorial deals with a single objective. The code snippets provided
as examples are easy to understand. This tutorial does not elaborate much on each
topic; rather, it helps you prepare for the exam by concentrating on the key points.

Each chapter contains mock questions in the pattern of the SCWCD exam. These
questions demonstrate the use of the ideas covered in that objective. Explanations
about the correct and incorrect choices are included to give you a better
understanding of the concepts.

Section 2. The servlet model

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 2 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

HTTP methods

The HTTP methods indicate the purpose of an HTTP request made by a client to a
server. The four most common HTTP methods are GET, POST, PUT, and HEAD. Let's
look at the features of these methods and how they are triggered.

GET method
The GET method is used to retrieve a resource (like an image or an HTML page)
from the server, which is specified in the request URL. When the user types the
request URL into the browser's location field or clicks on a hyperlink, the GET
method is triggered. If a tag is used, the method attribute can be specified as " GET
" to cause the browser to send a GET request. Even if no method attribute is
specified, the browser uses the GET method by default.

We can pass request parameters by having a query string appended to the request
URL, which is a set of name-value pairs separated by an "&" character. For
instance:

http://www.testserver.com/myapp/testservlet?studname=Tom&studno=123

Here we have passed the parameters studname and studno, which have the
values "Tom" and "123" respectively. Because the data passed using the GET
method is visible inside the URL, it is not advisable to send sensitive information in
this manner. The other restrictions for the GET method are that it can pass only text
data and not more than 255 characters.

POST method
The purpose of the POST method is to "post" or send information to the server. It is
possible to send an unlimited amount of data as part of a POST request, and the type
of data can be binary or text.

This method is usually used for sending bulk data, such as uploading files or
updating databases. The method attribute of the <form> tag can be specified as "
POST " to cause the browser to send a POST request to the server.

Because the request parameters are sent as part of the request body, it is not visible
as part of the request URL, which was also the case with the GET method.

PUT method
The PUT method adds a resource to the server and is mainly used for publishing
pages. It is similar to a POST request, because both are directed at server-side
resources. However, the difference is that the POST method causes a resource on
the server to process the request, while the PUT method associates the request data
with a URL on the server.

The method attribute of the <form> tag can be specified as " PUT " to cause the
browser to send a PUT request to the server.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 3 of 78

http://www.ibm.com/legal/copytrade.shtml

HEAD method
The HEAD method is used to retrieve the headers of a particular resource on the
server. You would typically use HEAD for getting the last modified time or content
type of a resource. It can save bandwidth because the meta-information about the
resource is obtained without transferring the resource itself.

The method attribute of the <form> tag can be specified as " HEAD " to cause the
browser to send a HEAD request to the server.

Request handling methods in HttpServlet

When an HTTP request from a client is delegated to a servlet, the service()
method of the HttpServlet class is invoked. The HttpServlet class adds
additional methods, which are automatically called by the service() method in the
HttpServlet class to aid in processing HTTP-based requests. You can override
these methods in your servlet class to provide the handling logic for each HTTP
request.

The methods are listed in the following table:

Table 1. HTTP Methods

HTTP Method Handler method in HttpServlet class

GET doGet()

POST doPost()

HEAD doHead()

PUT doPut()

The methods take HttpServletRequest and HttpServletResponse as the
arguments. All of them throw ServletException and IOException.

Servlet lifecycle

The servlet lifecycle consists of a series of events, which define how the servlet is
loaded and instantiated, initialized, how it handles requests from clients, and how is
it taken out of service.

Loading and instantiation
For each servlet defined in the deployment descriptor of the Web application, the
servlet container locates and loads a class of the type of the servlet. This can
happen when the servlet engine itself is started, or later when a client request is
actually delegated to the servlet. After that, it instantiates one or more object
instances of the servlet class to service the client requests.

Initialization

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 4 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

After instantiation, the container initializes a servlet before it is ready to handle client
requests. The container initializes the servlet by invoking its init() method,
passing an object implementing the ServletConfig interface. In the init()
method, the servlet can read configuration parameters from the deployment
descriptor or perform any other one-time activities, so the init() method is
invoked once and only once by the servlet container.

Request handling
After the servlet is initialized, the container may keep it ready for handling client
requests. When client requests arrive, they are delegated to the servlet through the
service() method, passing the request and response objects as parameters. In
the case of HTTP requests, the request and response objects are implementations
of HttpServletRequest and HttpServletResponse respectively. In the
HttpServlet class, the service() method invokes a different handler method for
each type of HTTP request, doGet() method for GET requests, doPost() method
for POST requests, and so on.

Removal from service
A servlet container may decide to remove a servlet from service for various reasons,
such as to conserve memory resources. To do this, the servlet container calls the
destroy() method on the servlet. Once the destroy() method has been called,
the servlet may not service any more client requests. Now the servlet instance is
eligible for garbage collection.

Retrieving request parameters and headers
Request parameters are stored by the servlet container as a set of name-value
pairs. The following methods of the ServletRequest interface are used to retrieve
the parameters sent by a client:

public String getParameter(String name);
public java.lang.String[] getParameterValues(String name);
public java.util.Enumeration getParameterNames();

The getParameter() method returns a single value of the named parameter. For
parameters that have more than one value, the getParameterValues() method
is used. The getParameterNames() method is useful when the parameter names
are not known; it gives the names of all the parameters as an Enumeration.

Retrieving request headers
The HTTP request headers can be retrieved using the following methods of the
HttpServletRequest interface:

public String getHeader(String name);
public java.util.Enumeration getHeaders(String name);
public java.util.Enumeration getHeaderNames();

For instance:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 5 of 78

http://www.ibm.com/legal/copytrade.shtml

public void doPost(HttpServletRequest req,HttpServletResponse res){
Enumeration headers=req.getHeaderNames();
while(headers.hasMoreElements()) {

String header=(String)headers.nextElement();
System.out.println("Header is "+header);

}
}

Retrieving initialization parameters
The initialization parameters of a servlet can be retrieved using the following
methods of the ServletConfig interface.

public String getInitParameter(String name);
public java.util.Enumeration getInitParameterNames();

Setting the response
The following methods of the ServletResponse interface can be used to set the
response that is sent back to the client.

public void setContentType(String type);

This method sets the content type of the response that is sent to the client. The
default value is "text/html."

public java.io.PrintWriter getWriter();
public javax.servlet.ServletOutputStream getOutputStream();

The getWriter() method returns a PrintWriter object that can send character
text to the client. The getOutputStream() method returns a
ServletOutputStream suitable for writing binary data in the response. Either of
these methods can be used to write the response, but not both. If you call
getWriter() after calling getOutputStream() or vice versa, an
IllegalStateException will be thrown.

For instance:

public void doGet(HttpServletRequest req,HttpServletResponse res) {
res.setContentType("text/html");
PrintWriter pw=res.getWriter();
pw.println("Hello World");
pw.close();

}

Setting response headers

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 6 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Response headers provide additional information to the browser about the response
received. Header information is stored as name value pairs. The following methods
in the HttpServletResponse interface are available to set header information.

public void setHeader(String name, String value);
public void setIntHeader(String name, int value);
public void setDateHeader(String name, long value);

Redirecting requests
It is possible to send a temporary redirect message to the browser, which directs it to
another URL. The method is provided by the HttpServletResponse interface.

public void sendRedirect(String location);

This method can accept relative URLs; the servlet container will convert the relative
URL to an absolute URL before sending the response to the client. If this method is
called after the response is committed, IllegalStateException is thrown.

Using the RequestDispatcher interface

The RequestDispatcher interface provides methods to include or forward a
request to another resource, which can be a servlet, HTML file, or JSP file. These
methods are:

public void forward(ServletRequest request, ServletResponse response);
public void include(ServletRequest request, ServletResponse response);

The forward() method allows a servlet to do some processing of its own before
the request is sent to another resource that generates the response. The
forward() method should not be called after the response is committed, in which
case it throws IllegalStateException.

The include() method enables a servlet to include the content of another
resource into its own response. Unlike in the case of the forward() method, the
included resource cannot change the response status code or set headers.

public RequestDispatcher getRequestDispatcher(String path);

Object attributes

A servlet can store data in three different scopes: request, session, and context.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 7 of 78

http://www.ibm.com/legal/copytrade.shtml

Data is stored as key value pairs, where the key is a String object and the value is
any object. These data objects are called attributes.

The attribute values persist as long as the scope is valid. The ServletRequest,
HttpSession(), and ServletContext() methods provide the following
methods to get, set, and remove attributes:

public java.lang.Object getAttribute(String name)

public void setAttribute(String name, Object object)

public void removeAttribute(String name)

The attributes set within the request scope can be shared with other resources by
forwarding the request. However, the attributes are available only for the life of the
request. A servlet can share session attributes with other resources that are serving
a request for the same client session. The attributes are available only while the
client is still active. The context scope is common for all the resources that are part
of the same Web application, so the objects stored within a context can be shared
between all these resources. These are available throughout the life of the Web
application.

The servlet model summary

In this section, you learned the servlet methods invoked in response to the different
HTTP requests like GET, POST, and PUT. Next, you walked through the servlet
lifecycle methods and the purpose of each one of them. You examined the
interfaces and methods used for operations like reading parameters, setting
headers, and so on, and discovered how to use the RequestDispatcher interface
to include or forward to a Web resource. Finally, you looked at the methods to get
and set object attributes in request, session, and context scopes.

Sample questions 2

Question 1:

You need to create a database connection in your application after reading the
username, password, and database server URL from the deployment descriptor.
Which will be the best place to do this?

Choices:

• A. Servlet constructor

• B. init() method

• C. service() method

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 8 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• D. doGet() method

• E. doPost() method

Correct choice:

• B

Explanation:

The init() method is invoked once and only once by the container, so the creation
of the database connection will be done only once, which is appropriate. The
service(), doGet(), and doPost() methods might be called many times by the
container.

The username, password, and URL are to be read from the deployment descriptor.
These initialization parameters are contained in the ServletConfig object, which
is passed to the init() method. That is why we need to use the init() method
instead of the constructor for this purpose, even though the constructor is also called
only once.

Question 2:

A user can select multiple locations from a list box on an HTML form. Which of the
following methods can be used to retrieve all the selected locations?

Choices:

• A. getParameter()

• B. getParameters()

• C. getParameterValues()

• D. getParamValues()

• E. None of the above

Correct choice:

• C

Explanation:

The getParameterValues(String paraName) method of the
ServletRequest interface returns all the values associated with a parameter. It
returns an array of Strings containing the values. The getParameter() method
returns just one of the values associated with the given parameter, so choice A is
incorrect. There are no methods named getParameters() or
getParamValues(), so choices B and D are incorrect.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 9 of 78

http://www.ibm.com/legal/copytrade.shtml

Section 3. Structure and deployment of modern servlet
Web apps

Web application defined

A Web application is a collection of servlets, JSP pages, static pages, classes, and
other resources that can be packaged in a standard way and run on multiple
containers from multiple vendors.

Application structure

A Web application exists in a structured hierarchy of directories, which is defined by
the Java Servlet Specification. The root directory of the Web application contains all
the public resources, such as images, HTML pages, and so on, stored directly or
within subfolders.

A special directory called WEB-INF exists, which contains any files that are not
publicly accessible to clients.

The WEB-INF directory is organized as follows:

• The /WEB-INF/web.xml deployment descriptor.

• The /WEB-INF/classes/ directory for servlet and utility classes. The
container makes these classes available to the Web application class
loader.

• The /WEB-INF/lib/ directory for JAR files. These files contain servlets,
beans, and other utility classes useful to the Web application. The
container adds all the JAR files from this directory to the Web application
class path.

Web Archive (WAR) files

Web application directories can be packaged and signed into a Web Archive (WAR)
format (that is, a JAR file with .war extension instead of .jar) file using the standard
Java Archive tools. When the container sees the extension .war, it recognizes that it
is a Web application archive, decompresses the file, and deploys the application
automatically.

A META-INF directory will be present in the WAR file, which contains information
useful to Java Archive tools. This directory must not be publicly accessible, though
its contents can be retrieved in the servlet code using the getResource and

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 10 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

getResourceAsStream calls on the ServletContext interface.

Deployment descriptor

The deployment descriptor must be a valid XML file, named web.xml, and placed in
the WEB-INF subdirectory of the Web application. This file stores the configuration
information of the Web application. The order in which the configuration elements
must appear is important and is specified by the deployment descriptor DTD, which
is available from java.sun.com (see Resources).

The root element of the deployment descriptor is the <web-app> element; all other
elements are contained within it.

Specifying the servlet details

Each servlet is defined using a <servlet> element; it contains child elements that
provide details about the servlet.

<servlet-name>: The servlet's unique name within the Web application is specified
by the <servlet-name> element. The clients can access the servlet by specifying
this name in the URL. It is possible to configure the same servlet class under
different names.

<servlet-class>: The fully qualified class name used by the servlet container to
instantiate the servlet is specified by the <servlet-class> element.

<init-param>: Each initialization parameter for a servlet is specified using an
<init-param> element. It has two child elements -- <param-name> and
<param-value> -- which give the name and value of the parameter. The value of
the initialization parameter can be retrieved in the servlet code using the
getInitParameter() method of the ServletConfig interface.

The following code demonstrates the use of the <servlet> element within the
deployment descriptor:

<servlet>
<servlet-name> TestServlet </servlet-name>
<servlet-class> com.whiz.TestServlet </servlet-class>
<init-param>

<param-name>country</param-name>
<param-value>India</param-value>

</init-param>
</servlet>

This code causes the servlet container to instantiate a servlet class
com.whiz.TestServlet and associates it with the name TestServlet. It has
one initialization parameter named "country," which has the value "India."

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 11 of 78

resources.html
http://www.ibm.com/legal/copytrade.shtml

Servlet mappings

In some cases, it might be required to map different URL patterns to the same
servlet. For this, we use the <servlet-mapping> element.

The <servlet-mapping> element has two sub-elements: <servlet-name> and
<url-pattern>. The <servlet-name> sub-element must match with one of the
servlet names declared in the deployment descriptor. The <url-pattern>
sub-element is the URL string to be mapped with the servlet.

Using URL paths
When a client request arrives for a particular servlet, the Web application that has
the longest context path matching with the start of the request URL is chosen first.
Then the requested servlet is chosen by the container by comparing the remaining
part of the request URI with the mapped URLs. The mapping rules are as follows
(the first successful match is taken):

1. If there is an exact match of the path of the request to the path of a
servlet, that servlet is chosen.

2. The container will recursively try to match the longest path-prefix. This is
done by stepping down the path tree a directory at a time, using the "/"
character as a path separator. The longest match determines the servlet
selected.

3. An extension is defined as the part of the last segment after the last "."
character. If the last segment in the URL path contains an extension (for
instance, .jsp), the servlet container will try to match a servlet that handles
requests for the extension.

4. If none of the previous three rules results in a servlet match, the container
will attempt to serve content appropriate for the resource requested. If a
"default" servlet is defined for the application, it will be used.

Consider the following sets of servlet mappings in the deployment descriptor:

<servlet-mapping>
<servlet-name>servlet1</servlet-name>
<url-pattern>/my/test/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>servlet2</servlet-name>
<url-pattern>/another </url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>servlet3</servlet-name>
<url-pattern>*.tst </url-pattern>

</servlet-mapping>

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 12 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

A string beginning with a "/" character and ending with a "/*" postfix is used for path
mapping. If the request path is /my/test/index.html, then servlet1 is invoked to handle
the request. Here the match occurs as was described in step 2 above.

If the request path is /another, then servlet2 services the request. Here the matching
occurs as was describe in step 1 above. But when the path is /another/file1.tst,
servlet3 is chosen. This is because the URL mapping for servlet2 requires an exact
match, which is not available, so the extension mapping as described above in step
3 is chosen.

However, if the request path is /my/test/new.tst, the request would be handled by
servlet1 and not by servlet3 because a match occurs in step 2 itself.

Web Archive (WAR) files summary

In this section, you learned the structural details of a servlet Web application,
including the directories to place the deployment descriptor, class files, JAR files,
and so on. You also saw how the servlet details like name, class, and initialization
parameters are specified in the deployment descriptor. Finally, you learned about
how to specify mappings between URL patterns and the servlets to be invoked.

Sample questions 3

Question 1:

Which of the following are not child elements of the <servlet> element in the
deployment descriptor?

Choices:

• A. <servlet-mapping>

• B. <error-page>

• C. <servlet-name>

• D. <servlet-class>

• E. <init-param>

Correct choices:

• A and B

Explanation:

The <servlet-mapping> and <error-page> elements are sub-elements of the
<web-app> element.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 13 of 78

http://www.ibm.com/legal/copytrade.shtml

The <servlet-name> element defines the name for the servlet, and the
<servlet-class> element specifies the Java class name that should be used to
instantiate the servlet. The <init-param> element is used to pass initialization
parameters to the servlet. The <servlet-mapping> element is used to specify
which URL patterns should be handled by the servlet. The <error-page> element
can be used to specify the error pages to be used for certain exceptions or error
codes.

Question 2:

Which of the following requests will not be serviced by MyServlet (assume that the
Web application name is test)?

<servlet-mapping>
<servlet-name> MyServlet </servlet-name>
<url-pattern> /my/my/* </url-pattern>

</servlet-mapping>

Choices:

• A. /test/my/my/my

• B. /test/my/my/a/b

• C. /test/my/my/a.jsp

• D. /test/my/a.jsp

• E. /test/my/my.jsp

Correct choices:

• D and E

Explanation:

To match a request URL with a servlet, the servlet container identifies the context
path and then evaluates the remaining part of the request URL with the servlet
mappings specified in the deployment descriptor. It tries to recursively match the
longest path by stepping down the request URI path tree a directory at a time, using
the "/" character as a path separator, and determining if there is a match with a
servlet. If there is a match, the matching part of the request URL is the servlet path
and the remaining part is the path info. In this case, when the servlet encounters any
request with the path "/test/my/my," it maps that request to MyServlet. In choices
A, B, and C, this path is present, hence they are serviced by MyServlet. Choices
and D and E do not have this complete path, so they are not serviced.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 14 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 4. The servlet container model

Context

An object that implements the javax.servlet.ServletContext interface
represents the environment in which a Web application is running. All the servlets
belonging to the same Web application share the same context.

There is one instance of the ServletContext interface associated with each Web
application deployed into a servlet container. If the container is distributed over
multiple JVMs, a Web application will have an instance of the ServletContext for
each VM.

Context initialization parameters

We can specify initialization parameters for a servlet context, so that
application-wide information can be shared by all the servlets that belong to the
same Web application. The servlets can retrieve these initialization parameters by
invoking the following methods of the ServletContext interface:

public String getInitParameter(String name);
public Enumeration getInitParameterNames();

The getInitParameter() method returns a String containing the value of the
named context-wide initialization parameter, or null if the parameter does not exist.
The parameter name passed is case sensitive. The getInitParameterNames()
method returns the names of the context's initialization parameters as an
Enumeration of String objects. An empty Enumeration is returned if the
context has no initialization parameters.

The servlet context is initialized when the Web application is loaded, and is
contained in the ServletConfig object that is passed to the init() method.
Servlets extending the GenericServlet class (directly or indirectly) can invoke the
getServletContext() method to get the context reference, because
GenericServlet implements the ServletConfig interface.

Declaring initialization parameters
Each servlet context initialization parameter of a Web application must be declared
within a <context-param> element. The sub-elements are <param-name>,
<param-value>, and <description> which is optional.

The following code specifies the name of the company as the context parameter:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 15 of 78

http://www.ibm.com/legal/copytrade.shtml

<context-param>
<param-name>CompanyName</param-name>
<param-value> IBM </param-value>
<description> Name of the company </description>

</context-param>

Note that <context-param> is a direct sub-element of the <web-app> root
element.

We can access the value of the CompanyName parameter from the servlet code as
follows:

String name=getServletContext().getInitParameter("CompanyName");

Application events and listeners

It might be necessary to take actions in response to certain events like the starting or
stopping of a Web application. The following section discusses some listener
interfaces that define methods, invoked in response to important events. To receive
notifications, the listener class must be configured in the deployment descriptor.

ServletContextListener
Implementations of the ServletContextListener interface receive notifications
about changes to the servlet context of the Web application of which they are part.
The following methods are defined in the ServletContextListener:

public void contextInitialized(ServletContextEvent sce)
public void contextDestroyed(ServletContextEvent sce)

The contextInitialized() method is invoked when the Web application is
ready for service and the contextDestroyed() method is called when it is about
to shut down. The following code shows how we can use these methods to log the
application events:

public void contextInitialized(ServletContextEvent e) {
e.getServletContext().log("Context initialized");
}

public void contextDestroyed(ServletContextEvent e) {
e.getServletContext().log("Context destroyed");
}

ServletContextAttributeListener
The ServletContextAttributeListener interface can be implemented to

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 16 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

receive notifications of changes to the servlet context attribute list. The following
methods are provided by this interface:

void attributeAdded(ServletContextAttributeEvent scab)
void attributeRemoved(ServletContextAttributeEvent scab)
void attributeReplaced(ServletContextAttributeEvent scab)

The attributeAdded() method is invoked by the container whenever a new
attribute is added. When an existing attribute is removed or replaced, the
attributeRemoved() and attributeReplaced() methods are invoked
respectively.

HttpSessionAttributeListener
We can store attributes in the HttpSession object, which are valid until the session
terminates. The HttpSessionAttributeListener interface can be implemented
in order to get notifications of changes to the attribute lists of sessions within the
Web application:

void attributeAdded(HttpSessionBindingEvent se)
void attributeRemoved(HttpSessionBindingEvent se)
void attributeReplaced(HttpSessionBindingEvent se)

The attributeAdded() method is invoked by the container whenever a new
attribute is added to a session. When an existing attribute is removed from a session
or replaced, the attributeRemoved() and attributeReplaced() methods are
invoked respectively.

Configuring the listeners

The <listener> element in the deployment descriptor can be used to configure
the listener implementation classes so that the servlet container can pass the events
to the matching notification methods. There should be a <listener> element for
each custom listener class implementing the ServletContextListener,
ServletContextAttributeListener, or SessionAttributeListener
interface. We do not need to specify which class implements that interface. This will
be found out by the servlet container itself.

The <listener> element has only one <listener> sub-element whose value is
specified as the fully qualified class name of the listener class as shown in the
following code:

<listener>
<listener-class>com.whiz.MyServletContextListener
</listener-class>

</listener>

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 17 of 78

http://www.ibm.com/legal/copytrade.shtml

<listener>
<listener-class>com.whiz.MyServletContextAttributeListener
</listener-class>

</listener>

Distributed applications

A Web application can be marked distributable, by specifying the
<distributable> element within the <web-app> element. Then the servlet
container distributes the application across multiple JVMs. Scalability and failover
support are some of the advantages of distributing applications.

In cases where the container is distributed over many VMs, a Web application will
have an instance of the ServletContext for each VM. However, the default
ServletContext is non-distributable and must only exist in one VM. As the
context exists locally in the JVM (where created), the ServletContext object
attributes are not shared between JVMs. Any information that needs to be shared
has to be placed into a session, stored in a database, or set in an Enterprise
JavaBeans component. However, servlet context initialization parameters are
available in all JVMs, because these are specified in the deployment descriptor.
ServletContext events are not propagated from one JVM to another.

All requests that are part of a session must be handled by one virtual machine at a
time. HttpSession events, like context events, may also not be propagated
between JVMs.

Also note that because the container may run in more than one JVM, the developer
cannot depend on static variables for storing an application state.

The servlet container model summary

Under the third objective, you learned the methods to retrieve the initialization
parameters of the servlet context. You also looked into the various events and
listeners at application and session levels, and learned about configuring
initialization parameters and listeners in the deployment descriptor. Finally, you
reviewed the behavior of servlet context and session in a distributed environment.

Sample questions 4

Question 1:

Following is the deployment descriptor entry for a Web application using servlet
context initialization parameters:

<web-app>
...

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 18 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<context-param>
<param-name>Bill Gates</param-name>
// xxx

</context-param>
...

</web-app>

Which of the following elements to be placed at "// xxx" is valid?

Choices:

• A. <param-size>

• B. <param-type>

• C. <param-value>

• D. <param-class>

Correct choice:

• C

Explanation:

The <context-param> element contains the declaration of a Web application's
servlet context initialization parameters. The <param-name> element contains the
name of a parameter. Each parameter name must be unique in the Web application.
The <param-value> element contains the value of a parameter.

Here is the DTD for the <context-param> element:

<!ELEMENT context-param (param-name, param-value, description?)>

The <param-size>, <param-type>, and <param-class> elements are invalid
elements. Thus choice C is correct.

Question 2:

Which of the following methods will be called when a ServletContext object is
created?

• A. ServletContextListener.contextInitialized()

• B. ServletContextListener.contextCreated()

• C. HttpServletContextListener.contextCreated()

• D. HttpServletContextListener.contextInitialized()

• E. None of the above

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 19 of 78

http://www.ibm.com/legal/copytrade.shtml

Correct choice:

• A

Explanation:

The ServletContext interface defines a set of methods that a servlet uses to
communicate with its servlet container. It is not Http-specific, so the interface is
ServletContext rather than HttpServletContext. The context is initialized at
the time that the Web application is loaded. The method called when the context is
initialized is contextInitialized(ServletContextEvent sce). The method
called when the context is destroyed is
contextDestroyed(ServletContextEvent sce). The
ServletContextEvent object that is passed in the contextInitialized()
and contextDestroyed() methods can be used to retrieve a reference to the
ServletContext object of the application.

Section 5. Developing servlets to handle server-side
exceptions

Exception handling

When a Web application causes errors at the server side, the errors must be
handled appropriately and a suitable response must be sent to the end user. In this
section, you will discuss the programmatic and declarative exception handling
techniques used to provide presentable error pages.

Exception handling in code

The HttpServletResponse interface provides the following methods that will
send an appropriate error page to the client to indicate some error condition on the
server side.

public void sendError(int statusCode);
public void sendError(int statusCode, String message);

The first version of the sendError() method sends an error response page,
showing the given status code. The second version also displays a descriptive
message.

The following code demonstrates the use of the sendError() method, handling

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 20 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

FileNotFoundException.

public void doGet(HttpServletRequest req, HttpServletResponse res) {
try {

// code that throws FileNotFoundException
}
catch (FileNotFoundException e) {
res.sendError(res.SC_NOT_FOUND);

}

The setStatus() method provided by the HttpServletResponse interface can
be used to send an HTTP status code to the client. It is used mostly for non-error
status codes such as SC_OK or SC_MOVED_TEMPORARILY.

public void setStatus(int statusCode);

These methods throw an IllegalStateException if the response is already
committed.

RequestDispatcher

When an error occurs, you can use RequestDispatcher to forward a request to
another resource to handle the error. The error attributes can be set in the request
before it is dispatched to the error page, as shown below:

public void doGet(HttpServletRequest req, HttpServletResponse res){
try {

// Code that throws exception
}
catch (Exception ex) {
request.setAttribute("javax.servlet.error.exception," ex.getMessage());
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher("error.jsp");
rd.forward(request,response);
}
}

Throwing exceptions

The service methods in the servlet class declare only ServletException and
IOException in their throws clauses, so we can throw only the subclasses of
ServletException, IOException, or RuntimeException from these methods.
All other exceptions should be wrapped as ServletException and the root cause
of the exception set to the original exception before being propagated.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 21 of 78

http://www.ibm.com/legal/copytrade.shtml

Declarative handling of exceptions

It is possible to configure error pages in the deployment descriptor, corresponding to
particular error codes or exceptions. If a servlet sets a status code to indicate an
error on the response, or if the servlet generates an exception that is unhandled, the
servlet container looks up the error page mappings and invokes the associated
resource.

The <error-page> element, which is a direct child of the <web-app> element,
contains a mapping between an error code or exception type and the path of a
resource in the Web application.

The following configuration maps the error code 404 to error.jsp and
SQLException to ErrorServlet:

<error-page>
<error-code>404</error-code>
<location>error.jsp</location>

</error-page>

<error-page>
<exception-type>java.sql.SQLException</exception-type>
<location>/error/ErrorServlet</location>

</error-page>

If the exception generated is ServletException, the container generates the root
cause exception wrapped in it, and then it looks for a matching error-page mapping.

Logging errors

It might be required to report errors and other debug information from the Web
application for later analysis.

The logging methods provided by the GenericServlet class and
ServletContext interface are:

public void log(String message)
public void log(String message, Throwable t)

The first version of the log() method writes the specified message, while the
second version writes an explanatory message and a stack trace for a given
Throwable exception to the servlet log file. Note that the name and type of the
servlet log file is specific to the servlet container.

Developing servlets to handle server-side exceptions summary

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 22 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

In this section, you learned about handling exceptions and generating appropriate
responses. You saw the sendError() and sendStatus() methods for
programmatically handling exceptions. Next, you discovered the ways to use the
declarative approach, by mapping exceptions and error codes to appropriate error
pages, in the deployment descriptor. You also learned about using
RequestDispatcher for forwarding a request to an error page. Finally, you
reviewed the methods for logging the exception and related messages to the
applications log file.

Sample questions 5

Question 1:

To which of the following classes or interfaces do the sendError() and
setStatus() methods belong?

Choices:

• A. HttpServletRequest

• B. HttpServletResponse

• C. ServletRequest

• D. ServletResponse

• E. None of the above

Correct choice:

• B

Explanation:

The above methods belong to the HttpServletResponse interface. The
sendError() methods (there are two overloaded methods) return an error
message to the client according to the status code. The setStatus() methods are
similar to the sendError() methods. They set the HTTP status code to be
included in the response. Note that the above methods also belong to the
HttpServletResponseWrapper class (in the javax.servlet.http package).
This class provides a convenient implementation of the HttpServletResponse
interface that can be subclassed by developers wishing to adapt the response from
a servlet.

Question 2:

Which of the following statements is true regarding the following deployment
descriptor definitions for an error-page element?

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 23 of 78

http://www.ibm.com/legal/copytrade.shtml

1. <web-app>
...

<error-page>
<error-code>404</error-code>
<location>/404.html</location>

</error-page>
...

<web-app>

2. <web-app>
...

<error-page>
<exception-type>java.sun.com.MyException</exception-type>
<location>/404.html</location>

</error-page>
...

<web-app>

Choices:

• A. Both of the above declarations are correct

• B. None of the above declarations is correct

• C. Only 1 is correct

• D. Only 2 is correct

Correct choice:

• A

Explanation:

The <error-page> element contains a mapping between an error code or
exception type to the path of a resource in the Web application. Here is the DTD
definition for the <error-page> element:

<!ELEMENT error-page ((error-code | exception-type), location)>

The error-code contains an HTTP error code, ex: 404. The exception type contains a
fully qualified class name of a Java exception type. The location element contains
the location of the resource in the Web application.

According to the above DTD definition, the <error-page> tag must contain either
the error-code or exception-type and location. Thus both of the declarations in the
question are true.

Section 6. Developing servlets using session

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 24 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

management

Maintaining sessions

HTTP, being a stateless protocol, has its own disadvantages. Each client request is
treated as a separate transaction. In Web applications, it becomes necessary for the
server to remember the client state across multiple requests. This is made possible
by maintaining sessions for client server interactions. When a user first makes a
request to a site, a new session object is created and a unique session ID is
assigned to it. The session ID, which is then passed as part of every request,
matches the user with the session object. Servlets can add attributes to session
objects or read the stored attribute values.

Session tracking gives servlets the ability to maintain state and user information
across multiple page requests. The servlet container uses the HttpSession
interface to create a session between an HTTP client and the server.

To retrieve the session, we can use the getSession() method of the
HttpServletRequest interface:

HttpSession getSession()
HttpSession getSession(boolean create)

Both the methods return the current session associated with this request. The first
method creates a new session, if there is no existing session. The second version
creates a new session only if there is no existing session and the boolean argument
is true.

Storing and retrieving session objects

The Session object has methods for adding, retrieving, and removing Java objects:

public void setAttribute(String name, Object value);
public Object getAttribute(String name);
public Enumeration getAttributeNames();
public void removeAttribute(String name);

The following example shows how a session is retrieved from the current request
and an Integer attribute is written into the session:

public void doGet(HttpServletRequest request, HttpServletResponse

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 25 of 78

http://www.ibm.com/legal/copytrade.shtml

response)throws ServletException, IOException {
response.setContentType("text/html");
HttpSession httpSession = request.getSession(true);
session.setAttribute("no", new Integer(2));

}

Session events and listeners

In the third objective, you learned about the HttpSessionAttributeListener
and its features. Here we'll discuss two more listener interfaces related to sessions --
HttpSessionBindingListener and HttpSessionListener.

HttpSessionBindingListener

An object implementing this interface is notified when it is bound to or unbound from
a session. It is not set in the deployment descriptor of the application because the
container checks the interfaces implemented by the attribute whenever it is added or
removed.

The methods provided by the interface are:

void valueBound(HttpSessionBindingEvent event);
void valueUnbound(HttpSessionBindingEvent event);

It is important to note the difference between HttpSessionAttributeListener
and HttpSessionBindingListener. HttpSessionAttributeListener is
implemented by an object that is interested in receiving events from all the sessions
belonging to the application, while HttpSessionBindingListener is
implemented by the object attributes for the particular session to which they are
added or removed.

HttpSessionListener

Implementations of HttpSessionListener are notified when a session is created
or destroyed. The methods provided by the interface are:

public void sessionCreated(HttpSessionEvent e);
public void sessionDestroyed(HttpSessionEvent e);

The implementing class of this interface needs to be configured using the
<listener> element in the deployment descriptor.

The HttpSessionEvent, which is passed to these methods, provides the following
method that returns the associated session:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 26 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

public HttpSession getSession();

Terminating a session

Sessions may get invalidated automatically due to a session timeout or can be
explicitly ended. When a session terminates, the session object and the information
stored in it are lost permanently.

The HttpSession interface provides the following method to terminate a session
explicitly:

public void invalidate();

This method throws an InvalidStateException if invoked on a session, which
has been invalidated. The container will unbind any objects bound to the session
before it destroys the session. The valueUnbound() method will be invoked on all
the session attributes that implement the HttpSessionBindingListener
interface.

Session timeout

It is possible to use the deployment descriptor to set a time period for the session. If
the client is inactive for this duration, the session is automatically invalidated.

The <session-timeout> element defines the default session timeout interval (in
minutes) for all sessions created in the Web application. A negative value or zero
value causes the session never to expire.

The following setting in the deployment descriptor causes the session timeout to be
set to 10 minutes:

<session-config>
<session-timeout>10</session-timeout>

</session-config>

You can also programmatically set a session timeout period. The following method
provided by the HttpSession interface can be used for setting the timeout period
(in seconds) for the current session:

public void setMaxInactiveInterval(int seconds)

If a negative value is passed to this method, the session will never time out.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 27 of 78

http://www.ibm.com/legal/copytrade.shtml

URL rewriting

Sessions are made possible through the exchange of a unique token known as
session id, between the requesting client and the server. If cookies are enabled in
the client browser, the session ID will be included in the cookie sent with the HTTP
request/response.

For browsers that do not support cookies, we use a technique called URL rewriting
to enable session handling. If URL rewriting is used, then the session ID should be
appended to the URLs, including hyperlinks that require access to the session and
also the responses from the server.

Methods of HttpServletResponse that support URL rewriting are:

public String encodeURL(String url)
public String encodeRedirectURL(String url)

The encodeURL() method encodes the specified URL by including the session ID
in it, or, if encoding is not needed, returns the URL unchanged.

The encodeRedirectURL() method encodes the specified URL for use in the
sendRedirect() method of HttpServletResponse. This method also returns
the URL unchanged if encoding is not required.

URL rewriting must be consistently used to support clients that do not support or
accept cookies to prevent loss of session information.

Developing servlets using session management summary

Under the fifth objective, you learned the methods to store and retrieve session
objects. Next, you saw how the various session events and the corresponding
listener interfaces. You also learned about the ways in which a session can be
invalidated. Finally, you examined how URL rewriting is needed to enable session
handling for browsers that do not offer cookie support.

Sample questions 6

Question 1:

Which of the following will ensure that the session never gets invalidated
automatically?

Choices:

• A. Specify a value of 0 for <session-timeout>

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 28 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• B. Call the setMaxInactiveInterval() method passing a value of 0

• C. Call the setMaxInactiveInterval() method passing a value of -1

• D. Call the setSessionTimeOut() method passing a value of 0

• E. Specify a value of -1 for <session-timeout>

Correct choices:

• A, C, and E

Explanation:

A <session-timeout> value of 0 or less means that the session will never expire, so
choices A and E are correct. The <session-timeout> element is a sub-element of
session-config. The setMaxInactiveInterval() method of HttpSession
specifies the number of seconds between client requests before the servlet
container will invalidate this session. A negative value (not 0) is required to ensure
that the session never expires, so choice C is also correct.

Question 2:

How should you design a class whose objects need to be notified whenever they are
added to or removed from the session?

Choices:

• A. Design the class implementing the SessionBinding interface

• B. Design the class implementing the HttpSessionBindingListener
interface

• C. Design the class implementing the HttpSessionListener interface

• D. Design the class implementing the
HttpSessionAttributeListener interface

• E. Configure an HttpSessionAttributeListener object in the
deployment descriptor

Correct choice:

• B

Explanation:

The task can be accomplished by designing a class implementing
HttpSessionBindingListener and then overriding two methods:
valueBound(HttpSessionBindingEvent e) and
valueUnbound(HttpSessionBindingEvent e). The first method will be called
whenever we add this object to a session. valueUnbound() is called whenever

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 29 of 78

http://www.ibm.com/legal/copytrade.shtml

this object is removed from the session.

HttpSessionAttributeListener is used to design a general session attribute
listener object, which always receives a notification whenever any type of attribute is
added to, removed from, or replaced from a session, so choices D and E are
incorrect.

Choice A is incorrect as there is no such interface. Choice C is incorrect because
HttpSessionListener is used to receive when a session is created or destroyed.

Section 7. Developing secure Web applications

Security

Secure communication is essential to protect sensitive data, including personal
information, passed to and from a Web application. Here you'll explore the important
security concepts and configurations to overcome the security issues in
servlet-based Web applications.

Security issues

Authentication is the means by which communicating entities verify their identities to
each other. The username/password combination is usually used for authenticating
the user.

Authorization is the means by which interactions with resources are limited to
collections of users or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints. Even though an account holder can log into a banking
system successfully, he is authorized to access only his own account.

Data integrity proves that information has not been modified by a third party while in
transit. The correctness and originality is usually verified by signing the transmitted
information. Auditing is the process of keeping a record or log of system activities, so
as to monitor users and their actions in the network, such as who accessed certain
resources, which users logged on and off from the system, and the like.

Malicious code is a piece of software that is deliberately designed to cause harm to
computer systems. This kind of code attacks vulnerable systems by exploiting
potential security holes. Viruses, worms, and trojans are examples of malicious
code.

A Web site may be attacked to extract sensitive information, to simply crash the
server, or for many other reasons. A denial-of-service attack is characterized by an
explicit attempt by hackers to prevent genuine users of a service from accessing a

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 30 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Web site by overloading the server with too many fake requests.

Authentication mechanisms

A Web client can authenticate a user to a Web server using one of the following
mechanisms:

• HTTP basic authentication

• HTTP digest authentication

• Form-based authentication

• HTTPS client authentication

HTTP basic authentication
In basic authentication, a Web server requests a Web client to authenticate the user.
The Web client obtains the username and the password from the user through a
login box and transmits them to the Web server. The Web server then authenticates
the user in the specified realm. Though it is quite easy to set up, it is not secure
because simple base64 encoding is used. It is supported by all the common
browsers.

HTTP digest authentication
The HTTP digest authentication also gets the username/password details in a
manner similar to that of basic authentication. However, the authentication is
performed by transmitting the password in an encrypted form. Only some Web
browsers and containers support it.

Form-based authentication
Form-based authentication allows a developer to control the look and feel of the
login screens. The login form must contain fields for entering a username and
password. These fields must be named j_username and j_password, respectively.

Form-based authentication has the same lack of security as basic authentication
because the user password is transmitted as plain text and the target server is not
authenticated. However, it is quite easy to implement and is supported by most of
the common browsers.

HTTPS client authentication
End-user authentication using HTTP over SSL (HTTPS) requires the user to
possess a public key certificate (PKC). All the data is transmitted after incorporating
public key encryption. It is the most secure authentication type and is supported by
all the common browsers.

Configuring the authentication mechanism

The <login-config> element is used to configure the authentication method that
should be used, the realm name that should be used for this application, and the

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 31 of 78

http://www.ibm.com/legal/copytrade.shtml

attributes that are needed by the form. It has three sub-elements: <auth-method>,
<realm-name>, and <form-login-config>.

The <auth-method> element is used to configure the authentication mechanism
for the Web application. As a prerequisite to gaining access to any Web resources
that are protected by an authorization constraint, a user must have authenticated
using the configured mechanism. Legal values for this element are "BASIC,"
"DIGEST," "FORM," or "CLIENT-CERT."

The <realm-name> element specifies the realm name to be used; this is required
only in the case of HTTP basic authorization.

The <form-login-config> element specifies the login page URL and the error
page URL to be used, if form-based authentication is used.

The following setting in the deployment descriptor defines basic authentication:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>student</realm-name>

</login-config>

Security constraints

A security constraint determines who is authorized to access the resources of a Web
application.

security-constraint
The <security-constraint> element is used to associate security constraints
with one or more Web resource collections. The sub-elements of
<security-constraint> are <display-name>
<web-resource-collection>, <auth-constraint>, and
<user-data-constraint>.

web-resource-collection
The <web-resource-collection> element specifies a collection of resources to
which this security constraint will be applied. Its sub-elements are
<web-resource-name>, <description>, <url-pattern>, and
<http-method> as described here:

• <web-resource-name> specifies the name of the resource.

• <description> provides a description for the resource.

• <url-pattern> specifies the URL patterns of the resource to be
accessed.

• <http-method> specifies the HTTP methods to which this constraint will
be applied.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 32 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If no HTTP methods are specified, the security constraint applies to all the HTTP
methods.

The following configuration specifies that the POST() method of MarksServlet will
be subject to the security constraints of the application:

<security-constraint>
<web-resource-collection>

<web-resource-name> marks </web-resource-name>
<url-pattern> /servlet/MarksServlet </url-pattern>
<http-method>POST</http-method>

</web-resource-collection>
</security-constraint>

auth-constraint
The <auth-constraint> element specifies which security roles can access the
resources to which the security constraint applies. Its sub-elements are
<description> and <role-name>.

The <role-name> element should be a name defined in the <security-role>
element in the deployment descriptor. Note that role names are case sensitive.

The following code indicates that users belonging to the role "teacher" would be
given access to the resources that are protected by the security constraint:

<auth-constraint>
<description>Only for teachers</description>
<role-name>teacher</role-name>

<auth-constraint>

To specify that all roles can access the secure resources, specify the asterisk (*)
character:

<auth-constraint>
<description> For all roles </description>
<role-name>*</role-name>

<auth-constraint>

user-data-constraint
The <user-data-constraint> element specifies how the data transmitted
between the client and the server should be protected. Its sub-elements are
<description> and <transport-guarantee>.

The <transport-guarantee> element can contain any of three values: NONE,
INTEGRAL, or CONFIDENTIAL. Here, NONE means no transport guarantee,
INTEGRAL means data cannot be changed in transit, and CONFIDENTIAL means
the contents of a transmission cannot be observed.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 33 of 78

http://www.ibm.com/legal/copytrade.shtml

The following example demonstrates the use of the <user-data-constraint>
element:

<user-data-constraint>
<description> Integral Transmission </description>
<transport-guarantee>INTEGRAL</transport-guarantee>

</user-data-constraint>

Security issues summary

The sixth objective deals with security in Web applications and such important
security concepts like authorization and authentication. You also learned about the
various authentication mechanisms like basic and digest. Finally, you saw how to
declare the security constraints and authentication mechanisms in the deployment
descriptor.

Sample questions 7

Question 1:

Which of the following authentication types uses public-key encryption as a security
mechanism for a Web application?

Choices:

• A. BASIC

• B. DIGEST

• C. FORM

• D. CLIENT-CERT

• E. None of the above

Correct choice:

• D

Explanation:

HTTP basic authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. It is not a secure
authentication mechanism; it sends user information in simple base64 encoding.
Hence choice A is incorrect.

Like the basic authentication type, HTTP digest authentication authenticates a user
based on a username and password. It is more secure; the user information is

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 34 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

encrypted before it's sent to the server. Hence choice B is incorrect.

In form-based authentication, the developer creates custom logic/error screens, the
display of which are managed by the Web server. Hence choice C is incorrect.

End-user authentication (CLIENT-CERT) using HTTPS (HTTP over SSL) is a strong
authentication mechanism. This mechanism requires the user to possess a public
key certificate (PKC). Hence choice D is correct.

Question 2:

Which of the following values may <transport-guarantee> contain?

Choices:

• A. NONE

• B. AUTHORIZED

• C. INTEGRAL

• D. AUTHENTICATED

• E. CONFIDENTIAL

Correct choice:

• A, C, and E

Explanation:

Choice C implies that the Web application requires the data transmission to have
data integrity, whereas choice E implies that the Web application requires the data
transmission to have data confidentiality.

Choice A implies that the application does not need any such guarantee. Plain HTTP
is used when the value is set to NONE. HTTPS is used when the value is set to
INTEGRAL or CONFIDENTIAL.

Choices B and D are incorrect because there are no such values for the
<transport-guarantee> element.

Section 8. Developing thread-safe servlets

Thread-safe servlets

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 35 of 78

http://www.ibm.com/legal/copytrade.shtml

Typically, the servlet container loads only one instance of a servlet to process client
requests.

A servlet instance may receive multiple requests simultaneously, and each time the
service() method is executed in a different thread. In this section, we discuss
what issues can arise when multiple threads execute servlet methods and how to
develop thread-safe servlets.

Multi-threaded model

The multi-threaded model, which is used by default, causes the container to use only
one instance per servlet declaration. By using a separate thread for each request,
efficient processing of client requests is achieved.

The figure below illustrates the multi-threaded model for servlets. One client request
arrives for servlet1 and two for servlet2. The container spawns one thread for
executing the service() method of servlet1 and two for the service() method of
servlet2. All the threads execute simultaneously and the responses generated are
returned to the clients.

SingleThreadModel interface

A very convenient way of ensuring that no two threads will execute concurrently in
the servlet's service() method is to make the servlet implement the
SingleThreadModel interface. The SingleThreadModel interface does not
define any methods. The servlet container guarantees this by either synchronizing
access to a single instance of the servlet or by maintaining a pool of servlet
instances and dispatching each new request to a free servlet.

The figure below illustrates the situation when servlet2 implements the
SingleThreadModel interface. Two client requests arrive for servlet2. Here the
container uses a different instance of servlet2 to service each of the two requests.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 36 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

However, this technique has its own disadvantages. If access to the servlet is
synchronized, the requests get serviced one after the other, which can cause a
severe performance bottleneck. Maintaining multiple servlet instances consumes
time and memory.

Even though multiple threads cannot enter the service() method simultaneously,
in this case thread safety issues are not completely taken care of. Static variables,
attributes stored in session and context scopes, and so on are still being shared
between multiple instances. Also, instance variables cannot be used to share data
among multiple requests because the instances serving each request might be
different.

Thread safety of variables and attributes

A servlet developer has to be aware of the effect of multiple threads on variables
and attributes stored in different scopes.

Local variables
Local variables are always thread safe because each servlet has its own copy of
these variables, so they cannot be used to share data between threads because
their scope is limited to the method in which they are declared.

Instance variables
Instance variables are not thread safe in the case of the multi-threaded servlet
model. In the case of servlets implementing SingleThreadModel, instance
variables are accessed only by one thread at a time.

Static variables
Static variables are never thread safe. These variables are at class level, so they are
shared between all instances. Hence these variables are not thread safe even if the
servlet is implementing the SingleThreadModel interface. That is why they are
usually used to store only constant/read-only data.

Context scope
The ServletContext object is shared by all the servlets of a Web application, so
multiple threads can set and get attributes simultaneously from this object.
Implementing the SingleThreadModel interface does not make any difference in

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 37 of 78

http://www.ibm.com/legal/copytrade.shtml

this case. Thus the context attributes are not thread safe.

Session scope
The HttpSession object is shared by multiple threads that service requests
belonging to the same session, so the session attributes are also not thread safe.
Just as the case with context attributes, the threading model has no impact on this
behavior.

Request scope
The ServletRequest object is thread safe because it is accessible only locally
within the service() method, so the request attributes are safe, irrespective of the
threading model used.

Thread-safe servlets summary

In this section, you learned about the thread safety issues for servlets. First, you
analyzed the implications of the multi-threaded servlet model, which is used by
default, in the case of servlets. Then, you moved onto the significance of the single
threaded model for servlets. You also identified the effect of multiple threads on
variables and attributes under various scopes, which helps in developing thread safe
Web applications.

Sample questions 8

Question 1:

Consider the following servlet code:

public class MyServlet extends HttpServlet
{
final static int i=0;
public void doGet(HttpServletRequest req, HttpServletResponse res)
{

private HttpSession session=req.getSession();
private ServletContext ctx=getServletContext();
synchronized(ctx)

{
Object obj=ctx.getAttribute();
// code to alter obj
}

}
}

Which of the following variables in the above code are thread safe?

Choices:

• A. i

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 38 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• B. session

• C. ctx

• D. req

• E. obj

• F. res

Correct choices:

• A, C, D, and F

Explanation:

The static variable i is thread safe because it is final (cannot be modified), or else it
would not have been safe. Request and response objects are scoped only for the
lifetime of the request, so they are also thread safe. Session and ServletContext
objects can be accessed from multiple threads while processing multiple requests,
so they are not thread safe. However, in this case, the ServletContext object is
synchronized, so it can be accessed only by one thread at a time. obj is not thread
safe because even though the ServletContext object is synchronized, its
attributes are not. They need to be synchronized separately. Hence choices B and E
are incorrect and choices A, C, D and F are correct.

Question 2:

Which of the following statements are true?

Choices:

• A. Multiple instances may be created on a servlet implementing
SingleThreadModel

• B. No more than one instance is created for a servlet implementing
SingleThreadModel

• C. Even static variables in a SingleThreadModel servlet are thread
safe

• D. If no threading model is implemented, by default a servlet is executed
in a multi-threaded model

Correct choices:

• A and D

Explanation:

When SingleThreadModel is implemented, the servlet container ensures that
only one thread is executing the servlet's method at a time. So what will happen for

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 39 of 78

http://www.ibm.com/legal/copytrade.shtml

multiple requests? In that case, the container may instantiate multiple instances of
the servlet to handle multiple requests, so option A is correct and B is incorrect.

If the SingleThreadModel interface is not implemented, a servlet uses the
multi-threaded model (that is, multiple threads can access the methods of the
servlet). Static variables can be accessed through multiple instances of the same
class, so they are not always thread safe. Hence choices B and C are incorrect and
choices A and D are correct.

Section 9. The JavaServer pages technology model

JavaServer Pages

JavaServer Pages (JSP) technology is an extension of the Java Servlet API. JSP
pages are typically comprised of static HTML/XML components, custom JSP tags,
and Java code snippets known as scriptlets.

Even though JSP pages can contain business processing logic, they are mainly
used for generating dynamic content in the presentation layer. Separation of
business logic from presentation logic is one of the main advantages of this
technology.

JSP tag types

JSP syntax can be classified into directives, declarations, scriptlets, expressions,
standard actions, and comments.

Directives
A JSP directive provides information about the JSP page to the JSP engine. The
types of directives are page, include, and taglib (a directive starts with a <%@
and ends with a %>):

• The page directive is used to define certain attributes of the JSP page:
<%@ page import="java.util.*, com.foo.*" %>

• The include directive is used to include the contents of a file in the JSP
page:
<%@ include file="/header.jsp" %>

• The taglib directive allows us to use the custom tags in the JSP pages:
<%@ taglib uri="tlds/taglib.tld" prefix="mytag" %>

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 40 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Declarations
JSP declarations let you define variables and supporting methods that the rest of a
JSP page may need.

To add a declaration, you must use the <%! and %> sequences to enclose your
declarations, starting with a <%! and ending with a %>:

<%! int sum=0; %>

Here the variable sum is initialized only once when the JSP page is loaded.

Scriptlets
Scriptlets are fragments of code that are embedded within <% ... %> tags. They
get executed whenever the JSP page is accessed:

<%
int count=0;
count++;
out.println("Count is "+count);
%>

Expressions
An expression is a Java expression that is evaluated when the JSP page is
accessed and its value gets printed in the resultant HTML page. JSP expressions
are within <%= ... %> tags and do not include semicolons:

<%= count %>

The above expression prints out the value of the variable count.

Standard actions
JSP actions are instructions that control the behavior of the servlet engine. The six
standard JSP actions are jsp:include, jsp:forward, jsp:useBean, jsp:setProperty,
jsp:getProperty, and jsp:plugin. We will discuss actions in more detail in the following
sections.

Comments
A JSP comment is of the form <%-- Content to be commented --%>. The
body of the content is ignored completely.

JSP documents

JSP files can now use either JSP syntax or XML syntax within their source files.
However, you cannot intermix JSP syntax and XML syntax in a source file.

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 41 of 78

http://www.ibm.com/legal/copytrade.shtml

JSP files using XML syntax are called JSP documents. All JSP documents have a
<jsp:root> element within which all the other elements are enclosed:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" xmlns:prefix1="URI-for-taglib1"
xmlns:prefix2="URI-for-taglib2" ...version="1.2">

// contents of the JSP page
</jsp:root>

Let's view a sample JSP document:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">
<jsp:directive.page errorPage="error.jsp" />
<jsp:directive.include file="test.jsp"/>
<jsp:declaration> int count=10; </jsp:declaration>
<jsp:text> Hello </jsp:text>
<jsp:expression> count * 10 </jsp:expression>
<jsp:scriptlet>

int i=100;
int j=11;
out.println(i+j);

</jsp:scriptlet>
</jsp:root>

You can see that the <jsp:scriptlet> tag is used for scriptlets, the
<jsp:expression> tag is used for expressions, the <jsp:declaration> tag is
used for declarations, and the <jsp:text> tag is used to embed text within a JSP
document. The page directive is represented as <jsp:directive.page> and the
include directive is represented as <jsp:directive.include>.

It is important to note that all the tags are case sensitive.

Page directive attributes

As discussed before, the page directives are used to define attributes that apply to
the JSP page as a whole. These are passed onto the JSP container at translation
time. Let's discuss the important page attributes that are relevant for the SCWCD
exam.

import
The import attribute of a page directive is used to import a Java class into the JSP
page. For instance:

<%@ page import="java.util.*, java.io.*,com.whiz.MyClass" %>
<%@ page import="com.whiz.TestClass" %>

It can appear multiple times in a translation unit.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 42 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

session
The session attribute can have a value of true or false. It specifies whether the
page should take part in an HttpSession. The default value is true. For instance:

<%@ page session="false" %>

errorPage
The errorPage attribute can be used to delegate the exception to another JSP
page that has the error handling code. For instance:

<%@ page errorPage="error.jsp" %>

isErrorPage
The isErrorPage attribute specifies whether the current page can be the error
handler for other JSP pages. The default value is false. For instance:

<%@ page isErrorPage="true" %>

language
The language attribute specifies the language used by the JSP page; the default
value is "java." For instance:

<%@ page language="java" %>

extends
The extends attribute specifies the superclass of the generated servlet class of the
JSP page. The default value of this attribute is vendor-specific. For instance:

<%@ page extends="mypackage.MyServlet" %>

buffer
The buffer attribute gives the minimum size of the output buffer before the content
is sent to the client. For instance:

<%@ page buffer="32kb" %>

autoFlush
The autoFlush attribute specifies whether the data in the buffer should be sent to
the client as soon as the buffer is full. The default value is true. For instance:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 43 of 78

http://www.ibm.com/legal/copytrade.shtml

<%@ page autoFlush="false" %>

JSP lifecycle

When a request is mapped to a JSP page for the first time, it translates the JSP
page into a servlet class and compiles the class. It is this servlet that services the
client requests.

A JSP page has seven phases in its lifecycle, as listed below in the sequence of
occurrence:

• Translation

• Compilation

• Loading the class

• Instantiating the class

• jspInit() invocation

• _jspService() invocation

• jspDestroy() invocation

Translation
In this phase, the JSP page is read, parsed, and validated. If there are no errors, a
Java file containing the servlet class is created.

Compilation
The Java file created in the translation phase is compiled into a class file. All the
Java code is validated and syntax errors are reported in this phase.

Loading and instantiating
The servlet class is loaded into memory and instantiated, if the compilation is
successful.

jspInit()
The jspInit() method is called only once in the life of the servlet. It is this method
that we perform any initializations required for the servlet.

_jspService
The request and response objects are passed to this method when each client
request is received for the JSP page. JSP scriptlets and expressions are processed
and included in this method.

jspDestroy()
The jspDestroy() method is called when the servlet instance is taken out of
service by the JSP engine. Any cleanup operation, such as releasing resources, can

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 44 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

be performed in this method. After this method is called, the servlet is unable to
serve any client requests.

JSP implicit objects

The JSP container makes available nine implicit objects that can be used within
scriptlets and expressions because they are defined in the _jspService() method
of the generated servlet.

The nine implicit objects in the JSP API and their purpose are listed in the following
table:

Table 2. Implicit objects

Object Class Purpose

application javax.servlet.ServletContextRefers to the Web
application's
environment in which
the JSP is executed.

config javax.servlet.ServletConfigThe initialization
parameters given in
the deployment
descriptor can be
retrieved from this
object.

exception java.lang.ThrowableAvailable for pages
that set the page
directive attribute
isErrorPage to
true. It can be used
for exception
handling.

Out javax.servlet.jsp.JspWriterRefers to the output
stream of the JSP
page.

page java.lang.Object Refers to the current
instance of the
servlet generated
from the JSP page.

pageContext javax.servlet.jsp.PageContextProvides certain
convenience
methods and stores
references to the
implicit objects.

request Subtype of
javax.servlet.ServletRequest

Refers to the current
request passed to
the
_jspService()
method.

response Subtype of Refers to the

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 45 of 78

http://www.ibm.com/legal/copytrade.shtml

javax.servlet.ServletResponseresponse sent to the
client. It is also
passed to the
_jspService()
method.

Conditional and iterative statements

For generating dynamic content based on conditions, we can use conditional
statements, such as if/else blocks. For performing repetitive tasks, there are iterative
statements using for or while loops. Conditional and iterative statements can span
across multiple scriptlets, so that we can include HTML code in between.

For instance, the following scriptlet code uses a conditional statement to check
whether a user's password is valid. If it is valid, the marks are printed using an
iterative statement.

<% if(passwordValid)
{

%>
Welcome, <%= username %>
<%
for(int i=0; i<10; i++)

{
%>

Printing <%=marks[i] %>
<%
}
}

%>

Be careful not to leave out the curly braces at the beginning and end of the Java
fragments.

JavaServer Pages summary

In this section, you saw the basics of the JavaServer Pages (JSP) model. You
learned about the various tag types and their purposes, and the various page
directive attributes. Next, you identified the different phases in the JSP page
lifecycle, followed by the nine implicit objects in the JSP API and the purpose of
each of them. Finally, we saw how conditional and iteration statements can span
across multiple scriptlets.

Sample questions 9

Question 1:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 46 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

What will be the result of accessing the following JSP page, if the associated
session does not have an attribute named str?

<%!
String str;
public void jspInit()
{
str = (String)session.getAttribute("str");

}
%>

The string is: <%= str %>.

Choices:

• A. "null" is printed

• B. NullPointerException is thrown

• C. Code does not compile

• D. None of the above

Correct choice:

• C

Explanation:

The JSP engine declares and initializes nine objects in the _jspService()
method. These implicit object variables are application, session, request,
response, out, page, pageContext, config, and exception. Because they
are declared locally to the _jspService() method, they are not accessible within
the jspInit() method, which means this code will not compile. If this code was
within the jspService() method, it would have compiled without errors and
printed "null." Hence choices A, B, and D are incorrect, and choice C is correct.

Question 2:

What will be the result of an attempt to access this JSP page?

<% x=10;% >
<% int x=5;% >
<%! int x; %>
x= <%=x%>
x= <%=this.x%>

The string is <%= str %>.

Choices:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 47 of 78

http://www.ibm.com/legal/copytrade.shtml

• A. Code does not compile because x is used before declaration

• B. Prints x=5 followed by x=10

• C. Prints x=10 followed by x=5

• D. Prints x=10 followed by x=0

• E. None of the above

Correct choice:

• B

Explanation:

This declaration will create an instance variable x and initialize it to 0. Then in the
service() method, you modify it to 10. Then you declare a local variable named x
and give it the value 5. When you print x, it prints the local version of value 5. When
you say this.x, you refer to the instance variable x, which prints 10. Hence
choices A, C, and D are incorrect, and choice B is correct.

Section 10. Developing reusable Web components

Reusing Web components

Reusing Web components reduces redundancy of code and makes your application
more maintainable. There are two mechanisms to reuse content in a JSP page: the
include directive and the <jsp:include> action. The include directive is for
including the contents of a Web component statically, while the <jsp:include>
action enables dynamic inclusion.

Using the include directive

If the inclusion of the component happens when the JSP page is translated into a
servlet class, it is static inclusion. Changes made to the included file later will not
affect the results of the main JSP page.

The JSP syntax for the include directive is:

<%@ include file="relativeURL" %>

The XML syntax is:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 48 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<jsp:directive.include file="relativeURL> />

If the relative URL starts with "/", the path is relative to the JSP application's context.
If the relative URL starts with a directory or file name, the path is relative to the JSP
file.

The included file can be a JSP page, HTML file, XML document, or text file. If the
included file is a JSP page, its JSP elements are translated and included (along with
any other text) in the JSP page. Once the included file is translated and included, the
translation process resumes with the next line of the including JSP page. For
instance, the following JSP page includes the content of the file another.jsp:

<html>
<head>
<title>JSP Include directive</title>
</head>
<body>

<%
This content is statically included.

<%@ include file="another.jsp" %>
</body>

</html>

The including and included pages can access variables and methods defined in the
other page; they even share the implicit JSP objects. However, the file attribute of
the include directive cannot be an expression. For instance, the following code is not
allowed:

<% String url="date.html"; %>
<%@ include file="<%=url%>" %>

The file attribute cannot pass parameters to the included page, so the following code
is illegal:

<%@ include file="new.jsp?name=ram" %>

The include directive is typically used to include banner content, date, copyright
information, or any such content that you might want to reuse in multiple pages.

Using the <jsp:include> action

The <jsp:include> action allows you to include either a static or dynamic
resource in a JSP page. If the resource is static, its content is included in the calling
JSP page. If the resource is dynamic, the request is delegated to the included

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 49 of 78

http://www.ibm.com/legal/copytrade.shtml

component. When the <jsp:include> action is finished, control returns to the
including page and the JSP container continues processing the page.

Dynamically included pages do not share the variables and methods of the including
page. The syntax for the jsp:include element is:

<jsp:include page="{relativeURL | <%= expression %>}" flush="true" />

The relative URL can be absolute or relative to the current JSP file. Here is an
example, demonstrating the use of the <jsp:include> action:

<jsp:include page="scripts/login.jsp" />

Note that the value of the page attribute can be an expression that evaluates to a
String, representing the relative URL, as shown here:

<% String url = "another.jsp" %>
<jsp:include page=">%=url%> " />

Because the <jsp:include> element handles both types of resources, you can
use it when you don't know whether the resource is static or dynamic.

<jsp:forward> action
The mechanism for transferring control to another Web component from a JSP page
is provided by the jsp:forward element. The forwarded component, which can be
an HTML file, a JSP file, or a servlet, sends the reply to the client. The syntax is:

<jsp:forward page="{relativeURL | <%= expression %>}" />

For instance, the following code forwards the request to main.jsp:

<jsp:forward page="/main.jsp" />

The remaining portion of the forwarding JSP file, after the <sp:forward> element,
is not processed. Note that if any data has already been sent to a client, the
<jsp:forward> element will cause an IllegalStateException.

Passing parameters in dynamic inclusion
When an include or forward action takes place, the original request object is
available to the target page. We can append parameters to the request object using
the <jsp:param> element. The included component should be dynamic, such as a

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 50 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

JSP or a servlet that can process the passed request parameters. For instance, the
request received by another.jsp has two additional parameters:

<jsp:include page="another.jsp">
<jsp:param name="username" value="Tom" />
<jsp:param name="ssn" value="<%=ssnString%>" />

</jsp:include>

As you can see in this example, the values passed can be static or dynamic.

Developing reusable Web components summary

In this section, which covered the ninth objective, you learned the ways to include
the content of another Web component into a JSP page. You saw how to include the
component statically -- that is, at translation time of the page -- and the ways to
dynamically include or forward the content of components when the JSP page is
requested.

Sample questions 10

Question 1:

Consider the following code segment:

<%! String filePath = "Helloworld.jsp"%>
<%@ include file="<%= filePath %>"%>

This will include the content of Helloworld.jsp within the current JSP file. Select the
right choice.

Choices:

• A. True

• B. False

Correct choice:

• B

Explanation:

When you include a file using the include directive, the inclusion processing is
done at translation time. But request-time attribute values are evaluated at request
time, not translation time. Therefore, the attribute value of the file cannot be an

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 51 of 78

http://www.ibm.com/legal/copytrade.shtml

expression, it must be a string literal value. Also remember that file attribute values
cannot pass any parameters to the included page, so the following example is
invalid:

<%@ include file="Helloworld.jsp?planet=Earth" %>

Question 2:

Which of the following can be used to include the file another.jsp in the file test.jsp,
assuming that there are no errors?

File 1: test.jsp

<% String str="hello"; % >

// line 1

<%= str%>
%>

File 2: another.jsp

<% str+="world"; %>

Choices:

• A. <jsp:directive.include file="another.jsp"/>

• B. <%@ include page="another.jsp" %>

• C. <%@ include file="another.jsp" %>

• D. <jsp:include page="another.jsp"/>

• E. <jsp:include file="another.jsp"/>

Correct choice:

• C

Explanation:

Here, another.jsp does not declare the variable str, so it cannot compile on its own.
Note that when a JSP file is dynamically included, it is compiled separately, so the
variables are not shared between the including files and the included one. In this
case, dynamic inclusion is not possible, so choices C and D are incorrect (D also
has an invalid attribute). Choice A is incorrect because XML syntax and JSP syntax

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 52 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

cannot be used on the same page. Choice B is incorrect because the valid attribute
for the include directive is file and not page.

Section 11. Developing JSP pages using JavaBeans
components

JavaBeans components

JavaBeans components (or beans) are Java classes that are portable, reusable, and
can be assembled into applications. JSP pages can contain processing and data
access logic in the form of scriptlets. However, if there is a lot of business logic to be
handled that way, it makes the JSP page cluttered and difficult to maintain. Instead,
you can encapsulate the processing logic within beans and use them with JSP
language elements.

Any Java class can be a bean, if it adheres to the following design rules:

• For each readable property of data type "proptype," the bean must have a
method of the following signature:

public proptype getProperty() { }

• For each writable property of data type "proptype," the bean must have a
method of the following signature:

public setProperty(proptype x) { }

In addition, the class must also define a constructor that takes no parameters. For
instance, the following class encapsulates user information and exposes it using
getter and setter methods.

public class User {
private String name;
private String password;
public User() {
}
public void setName(String name) {

this.name=name;
}
public String getName() {

return name;

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 53 of 78

http://www.ibm.com/legal/copytrade.shtml

}
public void setPassword(String password) {

this.password=password;
}
public String getPassword() {

return password;
}

}

Declaring the bean

The <jsp:useBean> action is used to declare that the JSP page will use a bean
that is stored within and accessible from the specified scope.

For instance, the following tag declares a bean of type UserBean and of id user,
in application scope:

<jsp:useBean id="user" class="UserBean" scope="application"/>

The value of the id attribute is the identifier used to reference the bean in other JSP
elements and scriptlets. The scope of the bean can be application, session,
request, or page. The id attribute is mandatory, while scope is optional. The
default value of scope is page.

The other possible attributes are class, type, and beanName. A subset of these
attributes needs to be present in the <jsp:useBean> action in one of the following
combinations:

• class

• class and type

• type

• beanName and type

Using class attribute
The following tag uses the class attribute. This causes the JSP engine to try and
locate an instance of the UserBean class with the id user, in the application scope.
If it is unable to find a matching instance, a new instance is created with the id
user, and stored in the application scope.

<jsp:useBean id="user" class="UserBean" scope="application"/>

Using class and type attributes
If class and type are both used as in the code below, the JSP engine tries to
locate a bean instance of type PersonBean. However, if a matching bean could not
be found, a new instance is created by instantiating the UserBean class. In this

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 54 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

case, UserBean has to be a class that is of type PersonBean.

<"jsp:useBean id="user" type="PersonBean" class="UserBean" scope="application"/>

Using type attribute
The type attribute can be used without class or beanName attributes as in the
case below:

<jsp:useBean id="user" type="PersonBean" scope="session"/>

This will cause the JSP engine to look for a bean of the given type within the
mentioned scope. In this case, if no existing bean matches the type, no new bean
instance will be created and an InstantiationException is thrown.

Using type and beanName attributes
The beanName attribute can refer to a class name or the name of a serialized file
containing the bean. When you use beanName, the bean is instantiated by the
java.beans.Beans.instantiate method. If the beanName represents a
serialized template, it reads the serialized form using a class loader. Otherwise, the
bean is normally instantiated.

<"jsp:useBean id="user" type="PersonBean" beanName="User.ser" scope="session"/>

JavaBeans code in servlets

The JSP attribute scopes are request, session, and application. We have
seen how to declare a bean within one of these scopes. As we already know, JSP
code gets translated into a servlet and then compiled before execution.

Let's discuss the equivalent servlet code generated for beans declared in different
scopes. In the servlet, objects of type HttpServletRequest, HttpSession, and
ServletContext implement the request, session, and application scopes,
respectively.

Consider the given bean declared within the request scope:

"jsp:useBean id="user" class="UserBean" scope="request"/>

Within the service() method, the equivalent servlet code would be as follows:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 55 of 78

http://www.ibm.com/legal/copytrade.shtml

UserBean user=(UserBean)request.getAttribute("user");
If(user==null)

{
user=new UserBean();
request.setAttribute("user",user);
}

Now consider the code if the bean is declared in the session scope:

<jsp:useBean id="user" class="UserBean" scope="session" />

Here we need to obtain a reference to the current session by invoking the
getSession() method of the request object. The generated servlet code would
be as shown here:

HttpSession session=request.getSession();
UserBean user=(UserBean)session.getAttribute("user");
if(user==null)

{
user=new UserBean();
session.setAttribute("user",user);

}

If the scope is application level, the bean is set as an attribute of the
ServletContext object. The code generated would be:

ServletContext context=getServletContext();
UserBean user=(UserBean)context.getAttribute("user");
If(user==null)

{
user=new UserBean();
context.setAttribute("user",user);
}

Setting bean properties

We can set the property of a bean by using the <jsp:setProperty> action. It has
four attributes: name, property, value, and param.

The name attribute refers to the id of the bean and the property attribute refers to
the bean property that is to be set. These are mandatory attributes.

The value attribute specifies the value to be specified for the bean property. The
param attribute can be the name of a request parameter whose value can be used
to set the bean property. It is obvious that the value and param attributes would
never be used together.

The following code sets the name property of UserBean to the value Tom:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 56 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<jsp:setProperty name="user" property="name" value="Tom" />

To set the value of the name property using the request parameter username, we
do the following:

<jsp:setProperty name="user" property="name" param="username" />

Assume that the request parameter has the same name as the bean property that
is to be set. In this case, the above code can be changed like this:

<jsp:setProperty name="user" property="name" />

Now let's see the code to set all the bean properties from the request parameter
values:

<jsp:setProperty name="user" property="*" />

If there is no matching request parameter for a particular property, the value of that
property is not changed. This does not cause any errors.

Getting bean properties

To retrieve bean properties and print them to the output stream, we use the
<jsp:getProperty> action. It has two attributes, name and propertyname,
which are both mandatory.

The following code causes the value of the bean property "name" to be printed out:

<jsp:getProperty name="user" property="name" />

Accessing JavaBeans components from JSP code

It is possible to access JavaBeans components from JSP code using the id attribute
that is specified in the bean declaration by the <jsp:useBean> action.

For instance, in the following code we need to invoke a bean method,
isLoggedIn(), to check if the user login was successful. For this, we refer to the
bean in the scriptlet using its id attribute:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 57 of 78

http://www.ibm.com/legal/copytrade.shtml

<jsp:useBean id="user" class="UserBean" scope="session" />

<%
if(user.isLoggedIn()) {

%>

<jsp:forward page="userhome.jsp" />

<% } else { %>

<jsp:forward page="error.jsp" >

<% } %>

Here, we forward the user to the home page if he is already logged in, and to the
error page if he is not.

Developing JSP pages using JavaBeans components summary

In this section, you learned how to declare and use JavaBeans components in JSP
pages. You reviewed the JSP actions for setting and getting bean properties. You
saw the servlet code generated for JavaBeans components declared in different
scopes: request, session, and application. Finally, you learned about
accessing declared beans from JSP scriptlets.

Sample questions 11

Question 1:

A user fills out a form in a Web application. The information is then stored in a
JavaBeans component, which is used by a JSP page. The first two lines of code for
the JSP page are as follows:

<jsp:useBean id="userBean" class="myapp.UserBean" scope="request"/>
<jsp:setProperty name="useBean" //XXX />

Which of the following should be placed in the position //XXX to parse all the form
element values to the corresponding JavaBeans component property (assuming that
the form input elements have the corresponding variables -- with the same name --
in the JavaBeans component)?

Choices:

• A. param="*"

• B. param="All"

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 58 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• C. property="*"

• D. property="All"

• E. None of the above

Correct choice:

• C

Explanation:

The jsp:setProperty action is used in conjunction with the jsp:useBean action
to set the value of bean properties used by the JSP page. The property of the
JavaBeans component can also be set as follows:

<jsp:setProperty name="myBean" property="name" value="<%=expression %>" />

When developing beans for processing form data, you can follow a common design
pattern by matching the names of the bean properties with the names of the form
input elements. You also need to define the corresponding getter/setter methods for
each property within the bean. The advantage in this is that you can now direct the
JSP engine to parse all the incoming values from the HTML form elements that are
part of the request object, then assign them to their corresponding bean properties
with a single statement, like this:

<jsp:setProperty name="user" property="*" />

This runtime magic is possible through a process called introspection, which lets a
class expose its properties on request. The introspection is managed by the JSP
engine and implemented through the Java reflection mechanism. This feature alone
can be a lifesaver when processing complex forms containing a significant number
of input elements.

If the names of your bean properties do not match those of the form's input
elements, they can still be mapped explicitly to your property by naming the
parameter as:

<jsp:setProperty name="user" property="address" param="parameterName" />

Hence choices A, B, D, and E are incorrect, and choice C is correct.

Question 2:

Which of the following uses of the <jsp:useBean> tag for a JSP page that uses

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 59 of 78

http://www.ibm.com/legal/copytrade.shtml

the java.sun.com.MyBean JavaBeans component are correct?

Choices:

• A. <jsp:useBean id = "java.sun.com.MyBean" scope="page"
/>

• B. <jsp:useBean id = "MyBean"
class="java.sun.com.MyBean" />

• C. <jsp:useBean id = "MyBean" type = "java.lang.String"
scope="page" />

• D. <jsp:useBean id = "MyBean"
beanName="java.sun.com.MyBean" scope="page" />

• E. <jsp:useBean id = "MyBean"
beanName="java.sun.com.MyBean" className="MyBean" type
= "java.lang.String" scope="page" />

Correct choices:

• B and C

Explanation:

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly
declared scripting variable of the same id.

The syntax of the jsp:useBean action is as follows:

<jsp:useBean id="name" scope="page|request|session|application" beandetails />

where beandetails can be one of:

class="className"
class="className" type="typeName"
beanName="beanName" type="typeName"
type="typeName"

The description of various attributes are:

• id: The case-sensitive name used to identify the object instance.

• scope: The scope within which the reference is available. The default
value is page.

• class: The fully qualified (including package name) class name.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 60 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• beanName: The name of a Bean, as you would supply to the
instantiate() method in the java.beans.Beans class. This
attribute can also be a request time expression.

• type: This optional attribute specifies the type of class, and follows
standard Java programming casting rules. The type must be a
superclass, an interface, or the class itself. The default value is the same
as the value of the class attribute.

From the rules above, we can say:

• Either class or type must be present. Thus choice A is incorrect, and
choices B and C are correct.

• If present, beanName must be accompanied by type. Thus choice D is
incorrect.

• Both beanName and class can't be present. Thus choice E is also
incorrect.

Section 12. Developing JSP pages using custom tags

Custom tags

JSP technology uses XML-like tags to encapsulate the logic that dynamically
generates the content for the page. Besides the standard JSP tags, it is possible for
the JSP developer to create custom tags, which encapsulate complex scripting logic.
Using custom tags instead of scriptlets promotes reusability, flexibility, and clarity of
the JSP page.

Tag libraries

JSP custom tags are distributed in the form of tag libraries. A tag library defines a
set of related custom tags and contains the tag handler objects. These handler
objects are instances of classes that implement some special interfaces in the
javax.servlet.jsp.tagext package. The JSP engine invokes the appropriate
methods of these classes when it encounters custom tags in the page.

The tag library needs to be imported into the JSP page before its tags can be used.

Tag library directive
A tag library can be declared by including a taglib directive in the page before any
custom tag is used:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 61 of 78

http://www.ibm.com/legal/copytrade.shtml

<%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %>

The uri attribute refers to a URI that uniquely identifies the tag library descriptor
(TLD) that describes the set of custom tags associated with the named tag prefix.

The prefix that precedes the custom tag name is given by the prefix attribute. You
cannot use the tag prefixes jsp, jspx, java, javax, servlet, sun, and sunw, as
these are reserved by Sun Microsystems. You can use more than one taglib
directive in a JSP page, but the prefix defined in each must be unique.

Tag library descriptor file names must have the extension . tld and are stored in
the WEB-INF directory of the WAR or in a subdirectory of WEB-INF.

We'll now discuss the possible values of the uri attribute. The value of the uri
attribute can be the absolute path to the TLD file as shown below:

• <%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %>

You can specify a logical name, which is mapped to the actual path of the TLD file in
the deployment descriptor as shown here:

• <%@ taglib uri="/mylib" prefix="test" %>

The <taglib> element in the deployment descriptor can be used to map the logical
name to the absolute path of the TLD file. It has two elements: <taglib-uri>
specifies the logical name, and <taglib-location> gives the TLD file path.

For instance, the following mapping can be used to map the short name /mylib to
/WEB-INF/mylib.tld.

<taglib>
<taglib-uri>/mylib</taglib-uri>
<taglib-location> /WEB-INF/tld/mylib.tld </taglib-location>

</taglib>

It is possible to specify a logical name even without configuring in the deployment
descriptor. The container reads the TLD files present in the packaged JAR files
present in the /WEB-INF/lib directory. For each TLD file that contains information
about its own URI, the JSP Engine automatically creates a mapping between the
given URI and the actual location of the TLD file.

We can also give the path to a packaged JAR file as the value for the uri attribute.
In this case, the JAR file must have the tag handler classes for all the tags in the
library. The TLD file must be placed in the META-INF directory of the JAR file.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 62 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<%@ taglib uri="/WEB-INF/lib/mylib.jar" prefix="test" %>

The classes implementing the tag handlers can be stored in an unpacked form in the
WEB-INF/classes subdirectory of the Web application. They can also be packaged
into JAR files and stored in the WEB-INF/lib directory of the Web application.

Using custom tags

JSP custom tags are written using XML syntax. The syntax for using a custom tag is
<prefix:tagName>, where the prefix is the value of the prefix attribute in the taglib
directive, which declares the tag library, and tagName is the name specified for the
tag in the corresponding TLD file. Let's see how the different tag types are used in
the JSP page.

Empty tag
A custom tag with no body is called an empty tag and is expressed as follows:

<prefix:tag />

Tag with attributes
A custom tag can have attributes, which can be used to customize the functionality
of the tag. The details of the attributes of a tag are specified in the TLD file. For
instance, the tag named welcome prints the message "Welcome Tom," because we
passed "Tom" as the value for the name attribute.

<test:welcome name="Tom" />

Tags with JSP code as body

A custom tag can contain JSP content in the form of static text, HTML, and JSP
elements like scriptlets, between the start and end tag. Such a tag is called a body
tag.

For instance, the following tag gets the username from the request parameter and
prints an appropriate welcome message.

<test:welcomeyou>
<% String yourName=request.getParameter("name"); %>
Hello <%= yourName %>

</test:welcomeyou>

For body tags with attributes, the processing of the body by the tag handler can be
customized based on the value passed for the attribute:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 63 of 78

http://www.ibm.com/legal/copytrade.shtml

<test:hello loopcount=3>
Hello World !

</test:hello>

Here, the tag processes the body iteratively; the number of iterations is given by the
value of the loopcount attribute.

Nested tags
A tag can be nested within a parent tag, as illustrated below:

<test:myOuterTag>
<H1>This is the body of myOuterTag</H1>
<test:repeater repeat=4>

Hello World!
</test:repeater>

</test:myOuterTag>

The nested JSP tag is first evaluated and the output becomes part of the evaluated
body of the outer tag. It is important to note that the opening and closing tags of a
nested tag and its parent tag must not overlap.

Developing JSP pages using custom tags summary

Custom tags are useful in reducing the amount of scriptlets in the JSP pages,
thereby allowing better separation of business logic and presentation logic. In this
section, you learned about tag libraries and the role of the taglib directive in
informing the JSP engine about the custom tags used in the page. You also learned
the different types of custom tags and how to use them in a JSP page.

Sample questions 12

Question 1:

Consider the following mapping in the web.xml file:

<taglib>
<taglib-uri>/myTagLib</taglib-uri>
<taglib-location>/location/myTagLib.tld</taglib-location>

</taglib>

How would you correctly specify the above tag library in your JSP page?

Choices:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 64 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• A. <%@ taglib uri="/myTagLib" id="myLib" %>

• B. <%@ taglib uri="/myTagLib" prefix="myLib" %>

• C. <%@ taglib name="/myTagLib" prefix="myLib" %>

• D. <%@ taglib uri="/myTagLib" name="myLib" %>

Correct choice:

• B

Explanation:

The taglib directive is used to declare a tag library in a JSP page. It has two
attributes: uri and prefix. The value of uri is the same as the value of the
<taglib-uri> element in the deployment descriptor, where it has been mapped to
the location of the library's TLD file. If this mapping is not used, then the uri
attribute must directly point to the TLD file using a root relative URI such as
uri="/location/myTagLib.tld." The prefix attribute is used to identify the tags from
this library, used in the JSP page. Hence choices A, C, and D are incorrect and
choice B is correct.

Question 2:

Which of the following XML syntaxes would you use to import a tag library in a JSP
document?

Choices:

• A. <jsp:directive.taglib>

• B. <jsp:root>

• C. <jsp:taglib>

• D. None of the above

Correct choice:

• B

Explanation:

In XML format, the tag library information is provided in the root element itself:

<jsp:root
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:test="sample.tld"
version="1.2">
.....

</jsp:root>

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 65 of 78

http://www.ibm.com/legal/copytrade.shtml

The attribute value pair xmlns:test="sample.tld" tells the JSPEngine that the
page uses custom tags of prefix myLib and the location of the tld file. Hence choices
A, C, and D are incorrect and choice B is correct.

Section 13. Developing a custom tag library

Custom tag library

You've already seen how to declare a tag library in a JSP page and how to use the
custom tags belonging to that library. In this section, you'll learn how to develop
custom tag libraries. To develop a tag library, you need to declare the tags in the tag
library descriptor (TLD) file and implement the tag handler classes.

Tag library descriptor

A tag library descriptor (TLD) is an XML file whose elements describe a particular
tag library. All tag definitions must be nested inside the <taglib> element in the
TLD.

The <uri> element uniquely identifies the tag library; its value can be specified for
the uri attribute in the taglib directive for the library. The JSP engine implicitly
creates a mapping between the uri and the actual location of the file:

<taglib>
<tlib-version> 1.0 <tlib-version>
<jsp-version>1.2 <jsp-version>
<short-name> test <short-name>
<uri> http://www.whizlabs.com/testLib </uri>
<tag>

<name> welcome</name>
<tag-class> whiz.MyTag</tag-class>
<body-content> empty</body-content>
<attribute>
<name>uname</name>
<required> true</required>
<rtexprvalue> false</rtexprvalue>

</attribute>
</tag>

</taglib>

Defining tags
Each tag is defined by a <tag> element. The mandatory elements <name> and
<tag-class> specify the unique tag name and the tag handler class, respectively.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 66 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If a tag accepts attributes, then the <tag> element should have one or more
<attribute> sub-elements.

We can indicate that an attribute is mandatory by specifying true value for the
<required> element. If a value is not supplied for the attribute when the tag is
used, this causes an error in the JSP page.

The <rtexprvalue> element specifies whether the attribute can accept
request-time expression values. The default is false.

<test:welcome uname="<%=request.getParameter("username") %>" />

The <body-content> element can have one of the following values: empty, JSP,
or tagdependent. For tags without a body or empty tags, we specify the value for
this element as "empty."

All the tag usage examples shown are valid for empty tags.

<test:mytag />
<test:mytag uname="Tom" />
<test:mytag></test:mytag>

For tags that can have valid JSP code (can be plain text, HTML, scripts, custom
tags) in their body, we specify the value for <body-content> as "JSP."

The following code illustrates the use of a tag with JSP code in its body:

<test:hello loopcount=3>
Hello World !

</test:hello>

When the <body-content> tag has the value "tagdependent," the body may
contain non-JSP content like SQL statements. For instance:

<test:myList>
select name,age from users
</test:myList>

When the <body-content> tag has the value "tagdependent" or "JSP," the body of
the tag may be empty.

Tag handler interfaces

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 67 of 78

http://www.ibm.com/legal/copytrade.shtml

The tag handlers must implement Tag, BodyTag, or IterationTag interfaces.
These interfaces are contained in the javax.servlet.jsp.tagext package.

Tag handler methods defined by these interfaces are called by the JSP engine at
various points during the evaluation of the tag.

Tag interface
The Tag interface defines the basic protocol between a tag handler and JSP
container. It is the base interface for all tag handlers and declares the main lifecycle
methods of the tag.

• The setPageContext() method is called first by the container. The
pageContext implicit object of the JSP page is passed as the argument.

• The setParent() method is called next, which sets the parent of the tag
handler.

• For each attribute of the custom tag, a setter method is invoked next.

• The doStartTag() method can perform initializations. It returns the
value EVAL_BODY_INCLUDE or SKIP_BODY.

• The doEndTag() method can contain the cleanup code for the tag. It
returns the value EVAL_PAGE or SKIP_PAGE.

• The release() method is called when the tag handler object is no
longer required.

IterationTag interface
The IterationTag interface extends Tag by defining one additional method that
controls the reevaluation of its body.

• IterationTag provides a new method: doAfterBody().

• If doStartTag() returns SKIP_BODY, the body is skipped and the
container calls doEndTag().

• If doStartTag() returns EVAL_BODY_INCLUDE, the body of the tag is
evaluated and included, and the container invokes doAfterBody().

• The doAfterBody() method is invoked after every body evaluation to
control whether the body will be reevaluated.

• If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, then
the body will be reevaluated. If doAfterBody() returns
Tag.SKIP_BODY, then the body will be skipped and doEndTag() will be
evaluated instead.

BodyTag interface
The BodyTag interface extends IterationTag by defining additional methods that
let a tag handler manipulate the content of evaluating its body:

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 68 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• The doStartTag() method can return SKIP_BODY,
EVAL_BODY_INCLUDE, or EVAL_BODY_BUFFERED.

• If EVAL_BODY_INCLUDE or SKIP_BODY is returned, then evaluation
happens as in IterationTag.

• If EVAL_BODY_BUFFERED is returned, setBodyContent() is invoked,
doInitBody() is invoked, the body is evaluated, doAfterBody() is
invoked, and then, after zero or more iterations, doEndTag() is invoked.
The doAfterBody() element returns EVAL_BODY_AGAIN or
EVAL_BODY_BUFFERED to continue evaluating the page and SKIP_BODY
to stop the iteration.

Accessing the implicit objects from tag handlers

The tag handler classes can access all the objects that are available to the JSP
page, in which the corresponding custom tags are being used. The PageContext
object that is passed to the setPageContext() method by the JSP engine,
represents the pageContext implicit object.

The PageContext class has the following methods to access the three JSP implicit
objects: request(), session(), and application().

Table 2. Methods of PageContext to access JSP implicit objects

Implicit object Method Name Return Type

Request getRequest() ServletRequest

Session getSession() HttpSession

Application getServletContext()ServletContext

Developing a custom tag library summary

In this section, you learned how to develop custom tag libraries. First, we walked
through the tag library descriptor and identified the various elements of a TLD file.
Next you learned about the Tag extension API for writing custom tag handlers.
Finally, you examined the important lifecycle methods of the three interfaces: Tag,
IterativeTag, and BodyTag.

Sample questions 13

Question 1:

Which of the following methods can return the SKIP_PAGE constant?

Choices:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 69 of 78

http://www.ibm.com/legal/copytrade.shtml

• A. doStartTag()

• B. doAfterBody()

• C. doEndTag()

• D. release()

Correct choice:

• C

Explanation:

Depending on the return value of the doStartTag() method, the container calls
the doEndTag() method. doEndTag() decides whether to continue evaluating the
rest of the JSP page or not. It returns one of the two constants defined in the Tag
interface: EVAL_PAGE or SKIP_PAGE.

A return value of Tag.EVAL_PAGE indicates that the rest of the JSP page must be
evaluated and the output must be included in the response. A return value of
Tag.SKIP_PAGE indicates that the rest of the JSP page must not be evaluated at all
and that the JSP engine should return immediately from the current
_jspService() method.

Question 2:

Which of the following statements is not true?

Choices:

• A. The container invokes the release() method on a tag handler object
when it is no longer required

• B. The setPageContext() method is the first method that is called in a
custom tag lifecycle

• C. The doAfterBody() is the only method defined by the
IterationTag interface

• D. The setBodyContent() method is called only if the doStartTag()
method returns EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED

Correct choice:

• D

Explanation:

The setBodyContent() method is called and the bodyContent object is set only
if doStartTag() returns EVAL_BODY_BUFFERED. The container may reuse a tag
instance if a custom tag occurs multiple times in a JSP page. The container calls the

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 70 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

release() method only when the tag is to be permanently removed from the pool.
This method can be used to release the tag handler's resources. The
setPageContext() method is the first method called in the lifecycle of a custom
tag. The JSP container calls this method to pass the pageContext implicit object of
the JSP page in which the tag appears. The doAfterBody() method is the only
method defined by the IterationTag interface. It gives the tag handler a chance
to reevaluate its body.

Section 14. J2EE design patterns

J2EE design patterns

Design patterns are abstractions of solutions to commonly experienced design
problems in software development. J2EE design patterns concentrate on the various
issues encountered in the architecture and implementation of enterprise
applications.

In this section, you'll learn about the five important J2EE design patterns covered in
the SCWCD exam.

Value Objects

In an Enterprise JavaBeans (EJB) application, each invocation on a session bean or
an entity bean is usually a remote method invocation across the network layer. Such
invocations on the enterprise beans create an overhead on the network. If the server
receives multiple calls to retrieve or update single attribute values from numerous
clients, system performance would be degraded significantly.

A Value Object is a serializable Java object that can be used to retrieve a group of
related data using just one remote method invocation. After the enterprise bean
returns the Value Object, it is locally available to the client for future access.

If a client wishes to update the attributes, it can do it on the local copy of the Value
Object and then send the updated object to the server. However, update requests
from multiple clients can corrupt the data.

The Value Object is also known as a Transfer Object or Replicate Object.

Model-view-controller

Consider an application that needs to support multiple client types like WAP clients,
browser-based clients, and so on. If we use a single controlling component to

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 71 of 78

http://www.ibm.com/legal/copytrade.shtml

interact with the user, manage business processing, and manage the database, it
affects the flexibility of the system. Whenever support for a new type of view needs
to be added, the whole application will need to be redesigned. Also the business
logic will need to be replicated for each client type.

As a solution to this problem, the model-view-controller (MVC) architecture divides
applications into three layers -- model, view, and controller -- and decouples their
respective responsibilities.

The model represents business data and operations that manage the business data.
The model notifies views when it changes and provides the ability for the view to
query the model about its state. Typically, entity beans would play the role of model
in the case of enterprise applications.

The view handles the display styles and user interactions with the system. It updates
data presentation formats when the model changes. A view also forwards user input
to a controller. In J2EE applications, the view layer would include JSP and servlets.

A controller dispatches user requests and selects views for presentation. It interprets
user inputs and maps them into actions to be performed by the model. In a
standalone application, user inputs include text inputs and button clicks. In a Web
application, users communicate by sending HTTP requests to the Web tier. Session
beans or servlets would represent the controller layer.

Business Delegate

In a J2EE application, the client code needs to utilize the services provided by the
business components. If the presentation tier components are made to access the
business tier directly, there are some disadvantages. Whenever the business
services API changes, all the client components would need to be altered
accordingly. Also, the client code needs to be aware of the location of the business
services.

The Business Delegate object helps to minimize coupling between clients and the
business tier. This object encapsulates access to a business service, thereby hiding
the implementation details of the service, such as lookup and access mechanisms. If
the interfaces of the business service changes, only the Business Delegate object
needs to be modified and the client components are not affected.

Using the Business Delegate can free the client from the complexities of handling
remote method calls. For instance, this object can translate network exceptions into
user-friendly application exceptions.

The Business Delegate may cache business service results. This improves
performance by reducing the number of remote calls across the network. The
Business Delegate object is also called client-side facade or proxy.

Front Controller

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 72 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

In the presentation layer of a Web application, multiple user requests need to be
handled and forwarded to the appropriate resource for processing. The navigation
steps vary according to the user actions. Also, the resources need to ensure that the
user has been authenticated and is authorized to access the particular resource.

If the responsibility to control the navigation, authentication, and other processing is
left to the views, it can give rise to certain problems. Each view component needs to
maintain information about the next or previous component in the navigational
sequence, which causes unnecessary dependency between components. Whenever
there is a modification in the processing logic, changes will need to be made in many
view components. Security code for authentication and authorization get mixed up
with the presentation code.

Front Controller is a controlling component that holds the common processing logic
that occurs within the presentation tier. It handles client requests and manages
security, state management, error handling, and navigation. The Front Controller
centralizes control logic that might otherwise be duplicated, and dispatches the
requests to appropriate worker components.

As a component that provides the initial single point of entry for all client requests, it
is also known as Front Component. Multiple Front Controllers can be designed for
different business use cases, which together manage the workflow of a Web
application.

Data Access Object

Most Web applications use a persistent storage mechanism to store data. The data
access methods may differ for different types of data sources, which might range
from relational databases to legacy systems. Even within an RDBMS environment,
the actual syntax and format of the SQL statements may vary depending on the
particular database product. Also, there might be applications that use more than
one data source.

The coupling between the business tier and the database tier can cause difficulties
in migrating the application from one data source to another. When this happens, all
the business components that access the data source need to be altered
accordingly. To overcome these dependencies, the business tier can interact with
data sources through a Data Access Object (DAO).

The DAO implements the access mechanism required to work with the data source.
The business component that relies on the DAO uses the simpler and uniform
interface exposed by the DAO for its clients. By acting as an adapter between the
component and the data source, the DAO enables isolation of the business
components from the data source type, data access method, and connectivity
details. Thus the data access logic is uniform and centralized, and database
dependencies are minimized by the use of this pattern.

J2EE design patterns summary

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 73 of 78

http://www.ibm.com/legal/copytrade.shtml

This final section covered some of the most important design patterns used for Web
applications: Value Objects, Model-View-Controller, Business Delegate, Front
Controller, and Data Access Objects. You learned the important characteristics of
each pattern and problems that are resolved by them.

Sample questions 14

Question 1:

Your Web application that handles all aspects of credit card transactions requires a
component that would receive the requests and dispatch them to appropriate JSP
pages. It should manage the workflow and coordinate sequential processing.
Centralized control of use cases is preferred. Which design pattern would be best
suited to address these concerns?

Choices:

• A. MVC

• B. Business Delegate

• C. Front Component

• D. Value Object

• E. Facade

Correct choice:

• C

Explanation:

Front Component or Front Controller is the design pattern best suited to handle the
given requirements. The Front Controller is a component that provides a common
point of entry for all client requests. It dispatches the requests to appropriate JSP
pages and controls sequential processing. The control of use cases is centralized
and a change in the sequence of steps affects only the Front Controller Component.
The requirements only specify that workflow should be controlled, so MVC is not the
right choice. (If asked about controlling and presenting the data in multiple views,
however, MVC should be chosen.) Hence choices A, B, D, and E are incorrect and
choice C is correct.

Question 2:

Consider a Web application where the client tier needs to exchange data with
enterprise beans. All access to an enterprise bean is performed through remote
interfaces to the bean. Every call to an enterprise bean is potentially a remote
method call with network overhead.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 74 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

In a normal scenario, to read every attribute value of an enterprise bean, the client
would make a remote method call. The number of calls made by the client to the
enterprise bean impacts network performance.

Which of the following design patterns is most suited to solve the above problem?

Choices:

• A. Data Access Object

• B. Model View Controller

• C. Value Object

• D. Business Delegate

Correct choice:

• C

Explanation:

In the scenario explained above, a single method call is used to send and retrieve
the Value Object. When the client requests the enterprise bean for the business
data, the enterprise bean can construct the Value Object, populate it with its attribute
values, and pass it by value to the client.

When an enterprise bean uses a Value Object, the client makes a single remote
method invocation to the enterprise bean to request the Value Object instead of
numerous remote method calls to get individual bean attribute values. Hence
choices A, B, and D are incorrect and choice C is correct.

Section 15. Wrap-up

Summing up the tutorial

In this tutorial, we covered a wide range of topics, as defined by the objectives of the
SCWCD exam. Real work experience in Java-based Web technologies needs to be
combined with a systematic learning pattern based on the test objectives to perform
well in the exam. Applying and experimenting with new concepts can reinforce what
you learn and in turn build your confidence. The sample exam questions given at the
end of each chapter in this tutorial provide insight into what you can expect in the
actual exam.

I hope this tutorial has been beneficial in your preparation for the SCWCD exam,

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 75 of 78

http://www.ibm.com/legal/copytrade.shtml

and I wish you the best of luck on your exam.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 76 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Take " Java certification success, Part 1: SCJP " by Pradeep Chopra (
developerWorks, November 2003).

• Here you can find the DTD for the Servlet 2.3 deployment descriptor.

• You can also refer to the JSP Documentation.

• Here are some useful JSP tutorials from Sun:

• JSP Tutorial

• JSP Short Course

• JSP Java Beans Tutorial

• You can explore the following tutorials on servlets:

• Servlet Tutorial

• Fundamentals of Java Servlets

• Learn how custom tags are developed and used. Check out the following links:

• Tag Libraries Tutorial

• Jakarta Taglibs Tutorial

• These SCWCD certification guides will help you focus on the exam topics:

• SCWCD Certification Study Kit (Manning Publications, July 2002) by
Hanumant Deshmukh and Jignesh Malavia

• Professional SCWCD Certification (Wrox Press, November 2002) by
Daniel Jepp and Sam Dalton

• Read more books on servlet and JSP technologies.

• Java Servlet Programming (O'Reilly, April 2001) by Jason Hunter with
William Crawford

• Professional JSP (Wrox Press, April 2001) by Simon Brown, Robert
Burdick, Jayson Falkner, Ben Galbraith, Rod Johnson, Larry Kim, Casey
Kochmer, Thor Kristmundsson, Sing Li, Dan Malks, Mark Nelson, Grant
Palmer, Bob Sullivan, Geoff Taylor, John Timney, Sameer Tyagi, Geert
Van Damme, and Steve Wilkinson.

• Take a look at the J2EE design patterns.

• Check out this comprehensive article on SCWCD certification.

• You can practice and assess your knowledge using the following:

ibm.com/developerWorks developerWorks®

Java certification success, Part 2: SCWCD
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 77 of 78

http://www.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/products/jsp/docs.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPBeans.html
http://java.sun.com/docs/books/tutorial/servlets/index.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/contents.html
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://jakarta.apache.org/taglibs/tutorial.html
http://www.manning.com/deshmukh/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007701/102-4503527-8965732?v=glance
http://www.oreilly.com/catalog/jservlet2/
http://www.amazon.com/exec/obidos/ASIN/1861004958/electricporkchop
http://java.sun.com/blueprints/patterns/j2ee_patterns/index.htm
http://www.whizlabs.com/articles/scwcd-article.html
http://www.ibm.com/legal/copytrade.shtml

• Whizlabs SCWCD Exam Simulator

• Java Ranch SCWCD Mock Exam

• Sun JSP Quiz

Get products and technologies

• You can download the Servlet 2.3 Specifications and JSP 1.2 Specifications.

• Download Apache Tomcat 4.0 Server to experiment with servlets and JSP
pages.

About the author

Seema Manivannan
Seema Manivannan has a Bachelor of Technology degree in Electrical and
Electronics Engineering and a PG in Advanced Computing from C-DAC. Her work
experience includes software development, teaching, and content development in
Java programming and related technologies. She holds SCJP, SCWCD, and SCBCD
certifications. She has been with Whizlabs for over two years, where she has
co-authored the Sun certification exam simulators. She is an experienced corporate
trainer and conducts Instructor-led online training for the SCJP, SCWCD, and
SCBCD certification exams for Whizlabs. She is also the moderator of the Whizlabs
SCBCD discussion forum. You can reach her at seema@whizlabs.com.

developerWorks® ibm.com/developerWorks

Java certification success, Part 2: SCWCD
Page 78 of 78 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.whizlabs.com/products/scwcd/scwcd.html
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://developer.java.sun.com/developer/Quizzes/javaserverpages.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/jsp/download.html
http://jakarta.apache.org/tomcat/index.html
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Getting started
	Preparing for SCWCD
	Should I take this tutorial?

	The servlet model
	HTTP methods
	Request handling methods in HttpServlet
	Servlet lifecycle
	Using the RequestDispatcher interface
	Object attributes
	The servlet model summary
	Sample questions 2

	Structure and deployment of modern servlet Web apps
	Web application defined
	Application structure
	Web Archive (WAR) files
	Deployment descriptor
	Specifying the servlet details
	Servlet mappings
	Web Archive (WAR) files summary
	Sample questions 3

	The servlet container model
	Context
	Context initialization parameters
	Application events and listeners
	Configuring the listeners
	Distributed applications
	The servlet container model summary
	Sample questions 4

	Developing servlets to handle server-side exceptions
	Exception handling
	Exception handling in code
	RequestDispatcher
	Throwing exceptions
	Declarative handling of exceptions
	Logging errors
	Developing servlets to handle server-side exceptions summary
	Sample questions 5

	Developing servlets using session management
	Maintaining sessions
	Storing and retrieving session objects
	Session events and listeners
	Terminating a session
	Session timeout
	URL rewriting
	Developing servlets using session management summary
	Sample questions 6

	Developing secure Web applications
	Security
	Security issues
	Authentication mechanisms
	Configuring the authentication mechanism
	Security constraints
	Security issues summary
	Sample questions 7

	Developing thread-safe servlets
	Thread-safe servlets
	Multi-threaded model
	SingleThreadModel interface
	Thread safety of variables and attributes
	Thread-safe servlets summary
	Sample questions 8

	The JavaServer pages technology model
	JavaServer Pages
	JSP tag types
	JSP documents
	Page directive attributes
	JSP lifecycle
	JSP implicit objects
	Conditional and iterative statements
	JavaServer Pages summary
	Sample questions 9

	Developing reusable Web components
	Reusing Web components
	Using the include directive
	Using the <jsp:include> action
	Developing reusable Web components summary
	Sample questions 10

	Developing JSP pages using JavaBeans components
	JavaBeans components
	Declaring the bean
	JavaBeans code in servlets
	Setting bean properties
	Getting bean properties
	Accessing JavaBeans components from JSP code
	Developing JSP pages using JavaBeans components summary
	Sample questions 11

	Developing JSP pages using custom tags
	Custom tags
	Tag libraries
	Using custom tags
	Tags with JSP code as body
	Developing JSP pages using custom tags summary
	Sample questions 12

	Developing a custom tag library
	Custom tag library
	Tag library descriptor
	Tag handler interfaces
	Accessing the implicit objects from tag handlers
	Developing a custom tag library summary
	Sample questions 13

	J2EE design patterns
	J2EE design patterns
	Value Objects
	Model-view-controller
	Business Delegate
	Front Controller
	Data Access Object
	J2EE design patterns summary
	Sample questions 14

	Wrap-up
	Summing up the tutorial

	Resources
	About the author

